Аэрогель что это такое
Аэрогель
Аэроге́ли (от лат. aer — воздух и gelatus — замороженный) — класс материалов, представляющих собой гель, в котором жидкая фаза полностью замещена газообразной. Такие материалы обладают рекордно низкой плотностью и демонстрируют ряд уникальных свойств: твёрдость, прозрачность, жаропрочность, чрезвычайно низкую теплопроводность и т. д. Распространены аэрогели на основе аморфного диоксида кремния, глинозёмов, а также оксидов хрома и олова. В начале 1990-х получены первые образцы аэрогеля на основе углерода.
Содержание
Структура
Аэрогели относятся к классу мезопористых материалов, в которых полости занимают не менее 50 % объёма. Как правило, этот процент достигает 90—99, а плотность составляет от 1 до 150 кг/м³. По структуре аэрогели представляют собой древовидную сеть из объединенных в кластеры наночастиц размером 2—5 нм и пор размерами до 100 нм.
История
Первенство в изобретении признано за химиком Стивеном Кистлером (Steven Kistler) из Тихоокеанского колледжа (College of the Pacific) в Стоктоне, Калифорния, США, опубликовавшего в 1931 году в журнале Nature свои результаты.
Кистлер заменял жидкость в геле на метанол, а потом нагревал гель под давлением до достижения критической температуры метанола (240 °C). Метанол уходил из геля, не уменьшаясь в объёме; соответственно, и гель «высыхал», почти не ужимаясь.
Свойства
На ощупь аэрогели напоминают легкую, но твердую пену, что-то вроде пенопласта. При сильной нагрузке аэрогель трескается, но в целом это весьма прочный материал — образец аэрогеля может выдержать нагрузку в 2000 раз больше собственного веса. Аэрогели, в особенности кварцевые — хорошие теплоизоляторы. Они также очень гигроскопичны.
По внешнему виду аэрогели полупрозрачны. За счёт релеевского рассеяния света на древовидных структурах они выглядят голубоватыми в отражённом свете и светло-жёлтыми в проходящем.
Виды аэрогелей
Углеродные аэрогели состоят из наночастиц, ковалентно связанных друг с другом. Они электропроводны и могут использоваться в качестве электродов в конденсаторах. За счет очень большой площади внутренней поверхности (до 800 м²/грамм) углеродные аэрогели нашли применение в производстве суперконденсаторов (ионисторов) емкостью в тысячи фарад. В настоящее время достигнуты показатели в 10 4 Ф/грамм и 77 Ф/см³. Углеродные аэрогели отражают всего 0,3 % излучения в диапазоне длин волн от 0,25 до 14,3 мкм, что делает их эффективными поглотителями солнечного света.
Глинозёмные аэрогели из оксида алюминия с добавками других металлов используются в качестве катализаторов. На базе алюмооксидных аэрогелей с добавками гадолиния и тербия в НАСА был разработан детектор высокоскоростных соударений: в месте столкновения частицы с поверхностью происходит флюоресценция, интенсивность которой зависит от скорости соударения.
Использование
Помимо многочисленных технических применений, обусловленных вышеперечисленными уникальными свойствами, аэрогель знаменит прежде всего использованием в проекте «Стардаст» в качестве материала для ловушек космической пыли.
Поскольку показатель преломления аэрогелей занимает промежуточное положение между показателями преломления газообразных и жидких (твёрдых) веществ, аэрогель используется как радиатор в черенковских детекторах заряженных частиц.
Аэрогели могут использоваться в качестве газовых и жидкостных фильтров.
Что такое Аэрогель?
25.04.2018
Аэрогель – вещество, изобретённое более 80 лет назад
но до сих пор считающееся материалом будущего.
Аэрогель – одно из легчайших в Мире твёрдых веществ, способное противостоять взрыву 1 кг динамита и защитить от пламени огнемёта (температура более 1.300С). Ожидается, что Аэрогель займёт своё место в ряду таких удивительных изобретений, как Бакелит в 1930-х годах, Карбоновое волокно 1980-х и Силикон в 1990-х.
Невозможно сказать точно, сколько учёных с начала 21 Века работают с Аэрогелями, в поисках всё новых и новых применений, от теннисных ракеток нового поколения, до супер-утеплённых космических скафандров для полёта на Марс. Но абсолютно уверенно можно утверждать, что все они в огромном долгу перед Доктором Сэмюэлем Стивенсом Кистлером (1900 – 1975), учёным-химиком, получившим первый Аэрогель и проведшим большую часть 20 Века в изучении его свойств и в поисках практического применения для своего изобретения, и буквально чуть-чуть не дожившим до признания и начала широкого его использования на благо человечества.
Впервые Аэрогель был получен в промежуток между 1929 и 1930 годами и, хотите верьте, хотите – нет, но толчком к его созданию послужило вполне заурядное пари, заключённое между Доктором Тихоокеанского колледжа в Стоктоне, Калифорния, США Сэмюэлем Стивенсом Кистлером и неким Чарльзом Лёрнедом. Поводом для пари явился спор о том, кому из них первому удастся заместить жидкость в «желе» газом без «усадки» (потери объёма) исходного вещества.
В результате в 1931 году Доктором Кистлером была опубликована статья в научном журнале Nature с результатами его экспериментов. Кистлер заменял жидкость в геле на метанол, а потом нагревал гель под давлением до достижения критической температуры метанола (240 o ). Метанол уходил из геля, не уменьшаясь в объёме; соответственно, и гель «высыхал», почти не сжимаясь.
Свойства аэрогеля
“Замороженный дым”, название, наиболее образно передающее первое впечатление от визуального знакомства с Аэрогелем. По внешнему виду кварцевые Аэрогели полупрозрачны, они выглядят голубоватыми в отражённом свете и светло-жёлтыми в проходящем. Сходными оптическими свойствами обладают Аэрогели на основе оксидов алюминия (Al2O3), циркония (ZrO2) и титана (TiO2).
Первые версии Аэрогеля были настолько хрупкими и дорогими в производстве, что он на несколько десятков лет оставался не более, чем лабораторным экспериментом. И лишь около 20 лет назад, в конце 1990-х НАСА проявила интерес к необычному веществу и начала финансировать работы по его практическому применению. В 1999 году Космическое Агентство отправило космический зонд Стардаст с «рукавицей», набитой Аэрогелем, чтобы улавливать пыль из хвоста кометы.
В настоящее время Аэрогель проходит испытания для создания взрывобезопасного корпуса и брони для военной техники. Так в лаборатории металлическая пластина, покрытая 6 мм аэрогеля, была оставлена почти невредимой при прямом воздействии взрывом 1 кг динамита.
Аэрографиты
Глинозёмные аэрогели
Глинозёмные аэрогели из оксида алюминия с добавками других металлов используются в качестве катализаторов. На базе алюмооксидных аэрогелей с добавками гадолиния и тербия в НАСА был разработан детектор высокоскоростных соударений: в месте столкновения частицы с поверхностью происходит флюоресценция, интенсивность которой зависит от скорости соударения. Исследователи полагают, что некоторые версии аэрогеля, изготовленные из платины, могут быть использованы для ускорения производства водорода. В результате, аэрогель может быть использован, чтобы получать водородное топливо.
Графеновый аэрогель
Самым лёгким на сегодня материалом в мире, по мнению Книги рекордов Гиннеса, является графеновый аэрогель, созданный в Китае исследователями Чжэцзянского университета. У него невероятно низкая плотность. Вес материала настолько мал, что его внушительный кусок легко удерживается лепестками цветка.
Грамм аэрогеля впитывает за секунду порядка 68-ми граммов нерастворимого в воде вещества. Он может использоваться в мероприятиях по защите окружающей среды и преодолению последствий экологических катастроф, подобных случившейся в 1996 году утечке 72000 тонн сырой нефти с танкера Sea Empress у побережья Милфорд-Хейвена в Пембрукшире. Меркьюри Канацидис, профессор химии Северо-Западного университета в Эванстоне, штат Иллинойс,, США, создавший вид Аэрогеля, предназначенный для очистки воды от ртути и свинца сказал: “это удивительный материал. Он имеет самую низкую плотность из всех веществ, известных человеку, но в то же время он может сделать так много. Он может быть использован для всего, от фильтрации загрязненной воды до изоляции от экстремальных температур, и, даже для ювелирных изделий.”
Компания Dunlop разработала ряд ракеток для сквоша и тенниса, усиленных Аэрогелем, которые, как говорят, обеспечивают большую мощность.
Энн Парментер, британская альпинистка, поднялась на Эверест, используя ботинки, которые имели стельки из Аэрогеля, а также спальные мешки, проложенные этим материалом. После завершения экспедиции она поделилась своими впечатлениями: “единственная проблема, с которой я столкнулась, заключалась в том, что мои ноги были слишком горячими, что является большой проблемой для альпиниста”. Нетипичная жалоба от покорителя Эвереста, не правда ли?
Однако же мир моды не принял Аэрогель. Hugo Boss создал линию зимних курток из материала, но вынужден был снять их с продажи после жалоб на то, что они были слишком “жаркими”.
Наконец, Аэрогель, нанесённый на волокнистые материалы, такие, как стеклохолст, карбоновое или керамическое волокно, с огромным успехом используется в строительстве в качестве теплоизоляции.
С тех пор теплоизоляционный Аэрогель активно входит на мировые рынки теплоизоляционных материалов, тесня традиционные теплоизоляционные материалы.
Недавно Аэрогель пришёл и в Россию. Сегодня его используют такие гиганты индустрии, как Газпром, Лукойл, Роснефть, Казаньоргсинтез, экономя миллиарды рублей, которые раньше улетали в атмосферу из-за теплопотерь. Время терять и растрачивать безвозвратно уходит. Наступает время сохранять и накапливать. Аэрогель способен решить проблемы теплопотерь не только в масштабах страны, но и в отдельно взятой семье.
На сегодняшний день в России пока нет своего производства Аэрогеля, кроме небольших исследовательских лабораторий в Новосибирске и Обнинске, но он уже используется в качестве добавки в различные теплоизоляционные материалы. Например, российская компания Альмален стала производить вспененный полиэтилен, включив Аэрогель в исходную композицию, что улучшило теплотехнические показатели этого теплоизоляционного материала, купить который вы можете уже сейчас в компании Венторус.
Как и любое другое «чудо» современной науки, Аэрогель, конечно же, не решит всех проблем человечества разом, но он в состоянии сделать нашу жизнь значительно комфортнее и безопаснее, а это – уже Чудо!
Аэрогель — происхождение, характеристики и области применения
Новости, поступающие с рынка строительных материалов, не перестают удивлять. Появляющиеся новинки порой во много раз превосходят своих предшественников по базовым эксплуатационным характеристикам. К таковым можно отнести аэрогель, про который недавно еще вообще никто ничего толком не знал, а многие не слышали и по сей день.
Аэрогель — происхождение, характеристики и области применения
В связи с некоторым дефицитом информации, видится разумным дать читателям нашего портала определённые понятия об этом продукте современных нанотехнологий. Постараемся раскрыть его заявляемые возможности в сферах термо- и гидроизоляции строительных конструкций.
Итак, рассматриваем аэрогель — происхождение, характеристики и области применения
Что такое аэрогель?
Происхождение аэрогеля
Аэрогель является необычным материалом, обладающим уникальными свойствами. Если верить публикациям, то благодаря своей уникальности он в книгу рекордов Гиннеса по целым 15-ти номинациям!
Аэрогель — почти невесомая прозрачная субстанция, напоминающая природную дымку. Прочный, легкий и экологически чистый материал является отличным утеплителем строительных конструкций и инженерных коммуникаций.
Его название «aergelatus», состоящее из двух словообразующих корней, можно перевести как «замороженный воздух». Другое расхожее название — «замороженный дым». Действительно, по внешнему виду, а также весу, аэрогель напоминает густую дымку.
История создания этого продукта весьма неоднозначна и оригинальна, так же, как и сам материал. Дело в том, что он был получен в лабораторных условиях уже довольно давно (уже скоро, как 100 лет — в 1931 году), и что интересно – во многом случайно. Это оказался, можно сказать, побочный продукт при кристаллизации в супернасыщенных и суперкритических жидкостях при проведении лабораторных исследований американским ученым Сэмюэлем Кислером. В результате замены воды в обычном геле на метанол и его последующего нагрева до температуры до 240 градусов при высоком давлении, спирт из состава улетучивался, но образовавшаяся пена не становилась меньше в объеме. В итоге получился мелкопористый, легкий и почти прозрачный материал — аэрогель.
Практического применения в те годы этой новой структуре найдено не было, как и доступной технологии для его синтеза в сколь-нибудь серьезных масштабах. Все это пришло позднее, ближе к концу века, когда было налажено производство аэрогеля и его полезное использование, прежде всего — в качестве очень эффективного термоизоляционного материала.
Особенности материала
Уникальность материала состоит в полном отсутствии в его составе какой бы то ни было жидкой фазы, которая в процессе производства вся полностью переходит в газообразное состояние. В результате аэрогель, представляющий собой уникальную молекулярную решетку с порами размером всего около 2 мкм, практически на 99,8% состоит из воздуха, полностью обездвиженного. Благодаря этому фактору аэрогель обладает очень низкой плотностью, по параметрам превосходящей только плотность воздуха и всего в полтора раза. В то же время материал имеет высокую прочность, которая позволяет ему выдержать нагрузку, превышающую его собственный вес в 2000 раз. Например, блок аэрогеля, массой всего 2,4 грамма, способен выдержать весовую нагрузку кирпича в 2,5 кг.
Ну а где обездвиженность газов – там и особые термоизоляционные качества. И что интересно – сопротивление теплопередаче аэрогеля – даже выше, чем у полностью неподвижной воздушной прослойки. Просто по той причине, что поры материала не оставляют никакой свободы движения молекулам, составляющим воздух. То есть здесь неподвижность рассматривается буквально на молекулярном уровне.
Структура аэрогеля под мощным микроскопом – с разным уровнем увеличения.
При изготовлении этого материала в промышленных условиях, гелеобразная субстанция проходит полимеризацию, после чего на выходе получается вещество желеобразной формы. Далее из этого «желе» должна быть полностью удалена вода — процесс суперкритического высыхания производится в специальном автоклаве при воздействии высокого давления и температуры, при участии в этом процессе углекислого сжиженного газа.
Начало промышленного использования аэрогеля – за компанией «Monsanto», которая освоила выпуск термоизоляционных материалов. Впрочем, производство просуществовало не столь долго и было свернуто просто из-за его дороговизны. Но уже в 90-х же годах аэрогели стали вновь применяться, но уже в космической отрасли. Постепенно этот материал «просочился» и в сферу промышленного строительства, где использовался на самых ответвленных участках, например, для термоизоляции технологических трубопроводов и резервуаров.
Технологические трубопроводы с термоизоляцией из полотна с аэрогелем.
В 2007 году в США химиками были разработаны и прошли презентацию аэрогели, в состав которых входит платина. Эти материалы предназначены для создания эффективных сорбционных фильтров, позволяющих производить очистку воды от свинца, ртути и других опасных для человека тяжелых металлов.
Одно из перспективных направлений развития аэрогелевых технологий – создание фильтров для очистки океанов планеты от загрязнений.
Правда, изготовление этого материала в промышленных масштабах — пока еще слишком дорогое из-за необходимости использования драгоценного металла. Поэтому идут лабораторные работы по поиску более доступного по стоимости аналога платине, который предоставит возможность массового производства фильтров. Это, как надеются разработчики, позволит в будущем производить очистку водоемов планеты от различных химических загрязнений.
Дополнит общие сведения об аэрогеле отрывок из научно-популярного фильма познавательного телеканала «Disсоvery»:
Видео: Что же такое аэрогель, и чем объясняются его уникальные свойства?
Разновидности аэрогелей
Не следует полагать, что аэрогель – это действительно гелеобразная субстанция, например, типа краски, которую нужно наносить с помощью кисти. Нет, конечно. Его следует рассматривать, как одно из самых легких из существующих твёрдых веществ. Кроме того, для практического применения аэрогеля его научились совмещать с керамическими, карбоновыми, стекловолоконными и другими основами, что упрощает использование уникальных качеств этого материала.
Сегодня существует несколько разновидностей аэрогелевых материалов, которые широко используются в разных областях и для различных целей:
Подобный тип аэрогелевых материалов имеет свойство пропускать солнечный свет, однако, в то же время поглощать тепловое излучение. Благодаря этой характеристике, а также чрезвычайно низкому коэффициенту теплопроводности, составляющего у производимых серийно кварцевых аэрогелей порядка 0,016÷0,018 Вт/(м×К), то есть меньше, чем у воздуха (около 0,024). Они используются в качестве теплоизолирующих и теплоудерживающих материалов в области строительства. Температура плавления этих аэрогелей составляет 1200 градусов. Материал толщиной всего в 25 мм способен надежно защитить руку от открытого огня паяльной лампы.
Выраженные достоинства материалов на основе аэрогеля
Общие преимущества аэрогелевых материалов можно описать таким образом:
Предлагаемые аэрогелевые материалы и их применение
На российский рынок аэрогелевые материалы поставляет несколько производителей, например, китайская компания «Joda», которая занимается производство инновационных композитных утеплительных материалов с 1995 года.
В настоящее время предлагаются следующие продукты на основе аэрогеля:
Далее будут представлены некоторые из самых востребованных материалов, произведенных на основе аэрогеля.
Аэрогелевый порошок и краска
Порошок может иметь различные по размеру фракции частиц, самым востребованным вариантом является 20 мкм, характеризующийся коэффициентом теплопроводности 0,017-0,022 Вт/(м×К).
Кремеземный аэрогелевый порошок
Порошок аэрогеля используется для изготовления гидро- и термоизоляционных составов с теми или иными связующими. Для получения желаемого эффекта на поверхность следует нанести один тонкий слой подобной изоляции.
Предлагается в товарном ассортименте и уже готовый состав для нанесения на поверхности – водная суспензия с латексным связующим.
Изоляционный аэрогелевый окрасочный состав
Состав применяется для изоляции гипсокартона, бетонных и полиуретановых поверхностей. Покрытие создает достаточно прочный слой, который способен:
Состав, имея хорошую адгезию, легко наносится на поверхность, эксплуатируется длительное время и является экологически чистым материалом.
Технологическая, противопожарная и строительная термоизоляция в полотнах и матах
Аэрогелевые нетканые материалы используются для теплоизоляции различного технологического оборудования, трубопроводов, иных ответственных конструкций. Эффективность такой термоизоляции уникальна, благодаря рекордно низкой теплопроводности, легкости, достаточной прочности и износостойкости, полному отсутствию влагопоглощения.
Для подобных целей используются полотна из композитных материалов, то есть в их состав, кроме аэрогеля, входят волокна разного происхождения.
В состав композитного утеплителя для внешних работ может быть добавлено стекловолокно, применяемые в производстве минеральной ваты. Широко используются керамические или углеродно-карболовые волокна,
Полотна производятся разной толщины, составляющей – от 2 до 12 мм. Такого диапазона считается вполне достаточно, чтобы защитить достичь необходимого эффекта термоизоляции.
Технические характеристики полотен для внешнего утепления выглядят следующим образом:
Наименование материала | «Joda Fiberglass SACB» (0-3; 0-6 или 0-10) | «Joda Carbon SACCT-A» | «Joda Ceramic SACTT» |
---|---|---|---|
Иллюстрация | |||
Особенности материала | Аэрогелевое полотно на основе стеклохолста | Аэрогелевое полотно на основе углеродно-карболового волокна | Аэрогелевое полотно на основе керамических волокон для высокотемпературной термоизоляции |
Толщина, мм | 3, 6 и 10 мм соответственно | 2 мм | 10 мм |
Ширина, мм | 1400 мм | 1400 мм | 1400 мм |
Длина полотна в рулоне, м | 40, 30 и 25 м соответственно | 70 м | 25 м |
Цвет | белый | черный | белый |
Рабочая температура, °C | от – 200 до + 650 | от 0 до 1000 | от +12 до +1000 ℃ |
Плотность, (кг/м³) | 200±20 | 180 | 200 |
Класс горючести | НГ (негорючий) | НГ (негорючий) | НГ |
Гидрофобность,% | >99,8 | >99,8 | >99,8 |
Коэффициент теплопроводности, Вт/(м×К) | 0.016 | 0.017 | 0.019 |
Устойчивость к коррозии | полная | полная | полная |
Форма выпуска | полотна (маты) | полотна | полотна (маты) |
Стоимость за 1 м² | 1600, 3300, 2500 руб. соответственно | 3150 руб. | 4800 руб. |
Вполне можно использовать материалы с аэрогелей и для утепления строительных конструкций в жилых домах. Вопрос лишь в стоимости.
Аэрогелевые полотна, используемые, например, для внутреннего утепления обладают гидрофобностью, составляющей 99%. Поэтому, высокая влажность окружающей среды не снизит теплоизоляционные качества материала. Учитывая еще и то, что утеплитель не содержит органических составляющих, он непривлекателен для грызунов и насекомых, а также не является благоприятной средой ни для каких форм жизни.
Фольгированный аэрогелевый утеплитель
Для внутреннего использования в условиях повышенной влажности хорошо подойдет фольгированный вариант утеплителя на основе аэрогеля.
К преимуществам аэрогелевых материалов для утепления внутри помещения можно отнести следующие качества:
В качестве примера аэрогелевых полотен, используемых в том числе и для утепления жилых помещений, можно привести маты «EVERGEL» польского производства.
Аэрогелевый мат «EVERGEL», который может применяться в том числе и для утепления в жилом строительстве.
Основные технические и эксплуатационные характеристики этого материала показаны в таблице:
А какой толщины утепления аэрогелевым матом будет достаточно?
Просто в качестве бонуса предлагаем прикинуть, какой лощины утеплительного слоя на основе аэрогеля будет достаточно для полноценной термоизоляции, допустим, наружной стены дома. и сравнить это значение с толщиной утепления из других популярных материалов.
Подсчитать будет несложно, так как читателю предлагается воспользоваться онлайн-калькулятором.
Для расчетов необходимо определить нормированное сопротивление теплопередаче для стен, соответствующее своему региону проживания (он, естественно, сильно зависит от климатических условий). Это значение несложно отыскать с использованием предлагаемой карты-схемы. Берется значение «для стен»: чтобы не спутать — оно указано цифрами фиолетового цвета.
Карта-схема с нормированными значениями термического сопротивления по регионам России.
В ходе расчетов будет предложено выбрать или аэрогель, или иной утеплитель. Если выбирается второй путь (например, для сравнения), то откроется дополнительное поле с перечнем наиболее популярных термоизоляционных материалов, используемых в жилищном строительстве.
Для расчетов понадобится указать толщину стены и материал, из которого она возведена. Задача несколько упрощена – в расчет не принимаются дополнительные слои, например, внешней и внутренней отделки. Они обычно не оказывают слишком существенного влияния на теплотехнические характеристики ограждающей конструкции, и в нашем случае, то есть для проведения сравнения, ими можно пренебречь. Хотя обычно в профессиональных расчётах учитываются все мелочи.
Нажатие на кнопку «Рассчитать…» приведет к получению результата, выраженного в миллиметрах (толщина утеплительного слоя). Можно провести сравнение различных термоизоляционных материалов в одних и тех же условиях на одной и той же конструкции – это бывает довольно интересно.
Калькулятор сравнения утепления аэрогелем с иными термоизоляционными материалами
Итак, материалы на основе аэрогеля вполне можно назвать универсальными. Они, кстати, могут иметь различную плотность и толщину, поэтому их применение постоянно ширится. Так, их в настоящее время используют не только в сфере промышленного и жилищного строительства, микроэлектроники, космической отрасли и различных технологических процессах, но и даже в качестве утеплителя для зимней одежды.
Таким образом, аэрогель, изобретенный более восьмидесяти лет назад, стал материалом XXI века. Ему пророчат большие перспективы, так как уникальные характеристики открывают все новые сферы для его применения.
Понравилась статья?
Сохраните, чтобы не потерять!