Аргумент что это такое в алгебре

Функции

Если две переменные величины находятся между собой в такой зависимости, что каждому значению одной переменной соответствует строго определённое значение другой, то первая величина называется аргументом, а вторая его функцией.

Функция — это зависимая переменная величина. Аргумент — это независимая переменная. Зависимость функции от аргумента называется функциональной зависимостью.

Если нужно указать на тот факт, что y функция от x, не акцентируя внимания на то, в какой именно зависимости находится функция от аргумента, то пишут просто:

Иногда, чтобы показать, что y зависит от x, пишут просто:

Обратите внимание, что вместо y и x могут использоваться любые другие буквы.

Значение y, соответствующее заданному значению x, называют значением функции. Все значения, которые принимает аргумент, образуют область определения функции. Все значения, которые принимает зависимая переменная, образуют множество значений функции. Для функции f приняты следующие обозначения:

D(f) — область определения функции
(множество значений аргумента).

E(f) — множество значений функции.

Пример. Возьмём формулу нахождения расстояния по скорости и времени:

где S — это расстояние, v — скорость, а t — время. Если взять скорость, равную 50 км/ч, то каждому неотрицательному значению t будет соответствовать строго определённое значение S:

t (ч)11,522,53
S (км)5075100125150

Источник

Что такое алгебра?! Функция и аргумент в алгебре.

В данной статье разберемся, что такое алгебра. Узнаем о таких понятиях, как функция и аргумент в алгебре и дадим простые и понятные определения.
Аргумент что это такое в алгебре. . Аргумент что это такое в алгебре фото. Аргумент что это такое в алгебре-. картинка Аргумент что это такое в алгебре. картинка .

Один из разделов математики это алгебра, которая подразумевает выполнение различных операций с числами, так как сложение, умножение и т.д. Можно сказать, что алгебра это нечто вроде расширения арифметики до более высокого уровня. Понять, что такое алгебра и откуда она взялась, помогут исторические факты. Первые предпосылки алгебры появились в разных уголках мира, людям нужна была алгебра для того, чтобы решить определенные уравнения. Например, в Древней Греции впервые об уравнениях заговорил Диофант, это был 2-3 век нашей эры.

В Китае примерно 2 тысячи лет до нашей времени уже было умение решать квадратные уравнения и уравнения первой степени. Также некоторые предпосылки алгебры встречались у индийского народа и жителей арабских стран. Согласно историческому прошлому, также отличилось издание «Алгебра» аль-Хваризми, которое стало популярным в 12-ом веке благо переводу на латинском языке. Человечество нуждалось в проведение расчетов, так появилась алгебра. Что такое алгебра для вас и нужна или нет, каждый решает сам. Потребность в алгебре появилась, как необходимость решать однотипные задачи. В школе алгебра всегда была и остается обязательным предметом.

Когда начинают учить алгебру в школе?

Аргумент что это такое в алгебре. 59928b7b188b5. Аргумент что это такое в алгебре фото. Аргумент что это такое в алгебре-59928b7b188b5. картинка Аргумент что это такое в алгебре. картинка 59928b7b188b5.

Разделение математики на несколько областях определило для алгебры решение определенных уравнений, под названием алгебраические уравнения. Что такое алгебра как предмет можно узнать только в 7-ом классе. Именно тогда вместе привычной математики появляется два отдельных предмета: алгебра и геометрия. Изучение начинается с простых понятий, также как и в случае других учебных процессов, все строится от простого материала к сложному.

7 класс оптимальное время для того, чтобы узнать, что такое алгебра. Вместо обычных операций с числами осуществляется переход на переменные. Так проще понять общие законы арифметики, научиться работать с неизвестными и функциями. Алгебру можно разделить на 5 отдельных категорий:

Школьная программа подразумевает изучение исключительно элементарной категории. Элементарная алгебра занимается изучением операций с вещественными числами. Перемененные и постоянные обозначены в алгебре символами в виде букв. С их помощью происходит преображение уравнений и математических выражений на основе четких правил.

Функция в алгебре

Аргумент что это такое в алгебре. ce26d4aca93a2036c3448f23a823cbf0. Аргумент что это такое в алгебре фото. Аргумент что это такое в алгебре-ce26d4aca93a2036c3448f23a823cbf0. картинка Аргумент что это такое в алгебре. картинка ce26d4aca93a2036c3448f23a823cbf0.

Понимание алгебры как предмет требует знание определенных элементов, так как функция, аргумент и определение. Что такое функция в алгебре и чем она определена? Функция является одним из основных понятий и определяет зависимость между переменными с неодинаковой величиной.

Что такое функция?:

Функция в алгебре представляет собой сопоставимость между двумя множествами. Согласно этому каждый элемент множества соответствует по одному единственному элементу другого множества.

Функция задается различным образом:

— согласно словесной формулировке (описание словами)

— аналитическим образом (используя формулу).

Школьная алгебра всецело сосредоточена над изучением числовых функций. Функция и аргумент указаны в виде чисел. Пример: y=f(x), где x перемена независимого типа, а y функция наоборот зависимая. У функции есть еще такие параметры как: область определения (D) и область значения (E). Первый параметр представляет собой совокупность значений для переменной «х», в то время как второй обозначает множество значений для «у».

Аргумент в алгебре

Аргумент что это такое в алгебре. 1. Аргумент что это такое в алгебре фото. Аргумент что это такое в алгебре-1. картинка Аргумент что это такое в алгебре. картинка 1.

Что такое аргумент в алгебре? Это не что иное, как перемена х, от которой зависит у, то есть функция. Аргумент функции в алгебре это независимая перемена с помощью которой определяется значение функции.

Значение аргумента можно определить по значению функции. Для определения аргумента по функции y=f(x), надо заменить y заданным значением. Остается только решить уравнение относительно x для того, чтобы значение стало известным. Существует возможность определения данного параметра и по графику функции.

Определение алгебры и ее практическая польза

Определение, что такое алгебра, позволяет понять какая от нее практическая польза. Только понимая область деятельности этой части математики, появляется стремление ее изучать. Благодаря алгебре, можно шагать на более высокий уровень познания математики. Алгебра это та простая ступень, которая позволяет делать прогресс в процессе изучения современной математики. Благодаря ней, появилась возможность взглянуть иначе на множества.

Постепенно элементарные значения алгебры перешли в более сложные понятия. Так появилась универсальная алгебра, которая стала основой для развития топологии. Алгебра это ступень, которая позволяет ступать дальше, и без нее не быть некоторым явлений прогресса. Знания некоторых людей, может завершиться на элементарных основ дисциплины, но в определенных областях глубокое изучение обязательно.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Источник

Функция. Аргумент. Прямая и обратная зависимость

Содержание

Вокруг нас происходит множество событий или процессов, которые можно измерить. При этом величина одних зависит от величины каких-либо других.

Так, например, от того, сколько мы испишем страниц в тетради, зависит количество оставшихся в стержне чернил. Чем больше кружек наполнено компотом, тем меньше его останется в кастрюле. Чем больше мама оставит денег на обеды, тем больше можно на них купить мороженого. А чем сильнее велосипедист крутит педали, тем больше километров он проедет. Придумайте свои примеры?

В наших описанных выше примерах первые два имеют обратную зависимость, то есть при увеличении одной величины (количество страниц и кружек в наших случаях), уменьшается вторая (количество чернил и компота в кастрюле).

Аргумент что это такое в алгебре. kompot i kruzhki. Аргумент что это такое в алгебре фото. Аргумент что это такое в алгебре-kompot i kruzhki. картинка Аргумент что это такое в алгебре. картинка kompot i kruzhki.Обратная зависимость

Примеры с велосипедистом и мороженым имеют прямую зависимость, то есть при увеличении одной величины (скорость движения педалями и количество оставленных мамой денег) увеличивается и другая (пройденное расстояние и количество мороженого).

Аргумент что это такое в алгебре. dengi i morozh. Аргумент что это такое в алгебре фото. Аргумент что это такое в алгебре-dengi i morozh. картинка Аргумент что это такое в алгебре. картинка dengi i morozh.Прямая пропорциональность

Зависимость, которая показывает как одна величина связана с другой величиной, как раз и называется функцией.

Аргумент и функция

Зависимые и независимые переменные могут обозначаться и любыми другими буквами (латинскими или греческими).

Примеры аргумента и функции

Запись функции

Слово «функция» произошло от латинского слова functio – исполнение, осуществление. Это одно из главных понятий в математике, показывающее зависимость одних переменных величин от других. Понятие «величина» в данном случае может включать в себя совершенно любое число.

Переменные могут принимать как положительные, так и отрицательные значения.

Источник

Функция, аргумент, значение функции

В стилистике учебников и пособий по математике определения понятий: «функция, аргумент функции, значение функции» звучат примерно так:

В общем виде функция записывается так:

у = f(x) (538.1)

Начнем с элементарного:

Неизвестная величина

Как правило жизнь ставит перед нами не очень сложные задачи и решаем мы их с легкостью. Например: если один пирожок стоит 3 рубля, а мы хотим купить 2 пирожка, то сколько для этого нам потребуется денег?

Ответ на первый взгляд очевиден и вроде бы никакого особого решения не требует: 6 рублей. Но давайте подойдем к этой ситуации с точки зрения математики и запишем соответствующие уравнения сначала с необходимыми пояснениями в скобках:

х (требуемое количество денег) = 2 (пирожка) · 3 (рубля/пирожок) (538.2.1)

х (требуемое количество денег) = 6 (рублей) (538.2.2)

При умножении пирожки сокращаются и остаются только рубли. Если использовать чистую математическую запись, т.е. без пояснения в скобках, то это будет выглядеть так:

х = 2 · 3 (538.3.1)

х = 6 (538.3.2)

Как правило в начальных классах школы на этом даже акцент не делается, детям просто предлагаются к решению задачи по определению неизвестной величины в виде:

5 + 2, определите сумму (538.4.1)

9 : 3, определите частное (538.4.2)

Но на мой взгляд это не правильно. Детей, начиная с начальных классов, следует готовить к определению неизвестной величины и в подобных случаях формулировка задания должна выглядеть примерно так:

Постоянная неизвестная величина

В приведенных выше уравнениях (538.3 и 4) неизвестная величина х может иметь только одно значение. Поэтому такая величина называется постоянной (хотя варианты обсчета продавцом не исключены, но к теме данной статьи это никак не относится).

При этом уравнений, при решении которых требуется определить эту самую постоянную неизвестную величину, может быть бесконечное количество. Вот только на решение этих самых уравнений это никак не влияет.

Если в уравнении, каким бы сложным оно ни было, есть только одна неизвестная величина, то такая величина является постоянной.

Вообще-то постоянные неизвестные величины более правильно обозначать литерами а, b, c и др. Впрочем в уравнениях с одной неизвестной, а потому постоянной величиной это большого значения не имеет и неизвестная величина часто обозначается литерой х.

Переменные неизвестные величины

Иногда жизнь ставит перед нами более сложные задачи. Например, мы по-прежнему хотим купить 2 пирожка, но еще не определились с выбором, так как пирожков с различной начинкой на рынке много и цена у них разная, от 3 до 30 рублей, а денег в кармане мало.

у = 2 · х (538.5)

Т.е если один пирожок стоит 3 рубля, то нам для приобретения 2 пирожков потребуется как и прежде 6 рублей, а если мы хотим купить 2 пирожка, стоящих по 30 рублей каждый, то нам потребуется уже 60 рублей. Это конечно еще не высшая математика, но очень близко к тому.

Область определения функции

Как правило простые уравнения с одной неизвестной постоянной величиной вида (538.4.1.2) имеют только одно решение. В уравнениях с двумя неизвестными вида (538.5) решений может быть столько, сколько существует возможных значений переменной х. Т.е. если на рынке есть пирожки с 10 различными ценами, то нам, чтобы определить все возможные значения у, нужно решить уравнение (538.5) 10 раз, а если пирожки со 100 различными ценами, то 100 раз.

А все это ценовое разнообразие от 3 до 30 рублей и будет областью определения функции

Примечание: Вообще в данном случае возможно еще большее ценовое разнообразие, если цена пирожков будет изменяться с шагом в 1 копейку.

Функция

Даже такие относительно простые уравнения как (538.5), решать 100 раз очень долго. А ведь уравнения бывают гораздо более сложными, а область определения практически бесконечной.

При этом математическая запись следующего вида:

у = f(x) = x · 2 (538.5.2)

График функции

А еще это означает, что решать уравнение для всех возможных значений х нет необходимости. Для функции можно построить график, т.е. отобразить зависимость у от х визуально. Для этого используется плоская система координат с осями х и у. Соответственно по оси х откладывается значение переменной х, а по оси у значение переменной у, определенной для этого значения х.

В простых случаях, т.е. когда между переменными существует линейная зависимость, для построения графика достаточно знать координаты 2 точек. Например для функции f(x) = 2х в пределах от 0 до 4 график будет выглядеть так:

Аргумент что это такое в алгебре. . Аргумент что это такое в алгебре фото. Аргумент что это такое в алгебре-. картинка Аргумент что это такое в алгебре. картинка .

Рисунок 538.1. График функции f(x) = 2x.

Таким образом, для всех промежуточных значений х, а это могут быть не только натуральные (т.е. целые) числа, мы можем определять значения у по графику. Для этого достаточно провести вертикальную линию из точки, обозначающей значение х, до графика (показан на рисунке 538.1 синей линией), а затем провести горизонтальную линию из точки пересечения вертикальной линии и графика. Пересечение горизонтальной линии с осью у покажет значение переменной у для соответствующего значения х. На рисунке 538.1 подобные действия не показаны, чтобы не усложнять график.

А теперь несколько слов о том, зачем все это может понадобиться например при изучении теоретической механики или теории сопротивления материалов.

При расчете строительных конструкций, например балок, необходимо определить значение поперечных сил и моментов, действующих в различных сечениях балки, а также углы поворота и перемещения нейтральной оси балки. Для этого строятся эпюры поперечных сил, моментов, углов поворота и прогиба. Так вот эти эпюры и есть графики соответствующих функций.

При этом длина балки l измеряется по оси х, соответственно нижний предел функции х = 0, а верхний предел функции х = l.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Источник

АРГУМЕНТ

Смотреть что такое «АРГУМЕНТ» в других словарях:

АРГУМЕНТ — (лат. argumentum, от arguere представлять, приводить, доказывать). Довод, доказательство. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АРГУМЕНТ [лат. argumentum] 1) лог. довод; суждения, положения, факты,… … Словарь иностранных слов русского языка

аргумент — Довод, доказательство, соображение, основание, резон. Ср. доказательство. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999 … Словарь синонимов

аргумент — а, м. argument m., лат. argumentum. 1. лог. Следствие, извлекаемое из двух предложений. Сл. 18. Аргумент называется в логике, когда два предложения сличаю с некоим третьим предложением, и усмотрев, что оба те сему третьему подобны, замечаю, что и … Исторический словарь галлицизмов русского языка

АРГУМЕНТ — АРГУМЕНТ, аргумента, муж. (лат. argumentum). 1. Довод, основание, приводимые в доказательство. Убедительный аргумент. Это не аргумент. Веский аргумент. 2. Независимая переменная величина (мат.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

АРГУМЕНТ — (лат. argumentum), l) суждение (или совокупность взаимосвязанных суждений), приводимое в подтверждение истинности к. л. др. суждения (или теории). 2) А. влогике посылка доказательства, иначе наз. основанием или доводом доказательства;… … Философская энциклопедия

аргумент — (неправильно аргумент) … Словарь трудностей произношения и ударения в современном русском языке

Аргумент — Аргумент ♦ Argument Идея, используемая в поддержку другой идеи, но недостаточная, чтобы ее утвердить. Аргумент – не доказательство, а то, что заменяет доказательство за его неимением … Философский словарь Спонвиля

АРГУМЕНТ — (латинское argumentum), 1) суждение (или совокупность суждений), приводимое в подтверждение истинности другого суждения (концепции, теории). 2) Основание (часть основания) доказательства … Современная энциклопедия

АРГУМЕНТ — АРГУМЕНТ, в математике обозначение независимой переменной. Например, в функции f(x)=х2+3 аргументом является х … Научно-технический энциклопедический словарь

АРГУМЕНТ — АРГУМЕНТ, а, муж. 1. Довод, доказательство. Веский а. 2. В математике: независимая переменная величина, изменением к рой определяется изменение другой величины (функции). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *