Архейская эра что происходило кратко
Архейская эра
Всего получено оценок: 221.
Всего получено оценок: 221.
История планеты Земля состоит из четырех эонов – отрезков времени, которые охватывают период от 4 млрд лет назад до современности. Самым первым из них является архей продолжительностью в 1,5 млрд лет. Термин для его обозначения был предложен американским геологом Джеймсом Дана в 1872 году.
Периодизация Архея
Архейской эре предшествовал катархей, но его осадочные породы неизвестны. Его нижней временной границей является время образования планеты Земля – 4,6 млрд лет назад, а закончился он 4 млрд лет назад.
Рис. 1. Архейская эра.
Периодов архейской эры геологи выделяют четыре:
На период эоархей приходится так называемая “Поздняя тяжелая бомбардировка” – время формирования кратеров на Луне и Марсе.
Растения и организмы
Флора и фауна архея не особо разнообразны. В данный период на планете существовал только один вид растений – одноклеточные нитчатые водоросли (сфероморфид).
Цианобактерии архея найдены геологами в Канаде, Африке и в азиатской части России.
Они повлияли на возникновение кристаллов арагонита и на появление кремневых и карбонатных залежей.
Другие особенности архейского периода
Температура воды в архее составляла 90 градусов. Единственной сушей в мезоархее являлись вулканические острова, которые можно считать первыми горами. Других типов гор не могло появиться из-за отсутствия тектонической активности. В результате столкновения с крупным астероидом, 3 млрд лет назад на планете появился самый древний из кратеров. Он обнаружен в Гренландии. Первые снег и лед земного происхождения появились 2,9 млрд лет назад. Первое оледенение получило название – понгольское (в честь города Понгола в ЮАР).
К основным событиям завершающего этапа этого эона (неоархею) следует отнести превращение материка Ур в суперконтинент Кенорленд. Это произошло около 2,7 млрд лет назад. Позже, около 2,6 млрд лет назад, Кенорленд присоединился к суперконтиненту Арктида.
Следующей геологической эрой стал протерозой. Он продолжался 2 млрд лет и включал в себя: палеопротерозой, мезопротерозой и неопротерозой.
Что мы узнали?
Событий в архейской эре геологической истории Земли было не так уж и много, их всего можно перечислить в кратком сообщении, которое будет включать в себя характеристику четырех периодов этой эры и описание специфики каждого из них. В смысле флоры и фауны архейская эра самая бедная из четырех, зато она привела к образованию некоторых полезных ископаемых.
Архейская эра – периоды, особенности, климат кратко
История планеты Земля состоит из четырех эонов – отрезков времени, которые охватывают период от 4 млрд лет назад до современности. Самым первым из них является архей продолжительностью в 1,5 млрд лет. Термин для его обозначения был предложен американским геологом Джеймсом Дана в 1872 году.
Периодизация Архея
Архейской эре предшествовал катархей, но его осадочные породы неизвестны. Его нижней временной границей является время образования планеты Земля – 4,6 млрд лет назад, а закончился он 4 млрд лет назад.
Рис. 1. Архейская эра.
Периодов архейской эры геологи выделяют четыре:
На период эоархей приходится так называемая “Поздняя тяжелая бомбардировка” – время формирования кратеров на Луне и Марсе.
Рис. 2. Архейская эра фауна.
Растения и организмы
Флора и фауна архея не особо разнообразны. В данный период на планете существовал только один вид растений – одноклеточные нитчатые водоросли (сфероморфид).
В дальнейшем водоросли привели к формированию лишайников. В архее появились одноклеточные безъядерные организмы, которые называются прокариоты. Они могли производить кислород и создавать условия для возникновения новых организмов. Существует спорная теория о зарождении в этот период эукариотов – организмов из царства грибов.
Цианобактерии архея найдены геологами в Канаде, Африке и в азиатской части России.
Они повлияли на возникновение кристаллов арагонита и на появление кремневых и карбонатных залежей.
Другие особенности архейского периода
Температура воды в архее составляла 90 градусов. Единственной сушей в мезоархее являлись вулканические острова, которые можно считать первыми горами. Других типов гор не могло появиться из-за отсутствия тектонической активности. В результате столкновения с крупным астероидом, 3 млрд лет назад на планете появился самый древний из кратеров. Он обнаружен в Гренландии. Первые снег и лед земного происхождения появились 2,9 млрд лет назад. Первое оледенение получило название – понгольское (в честь города Понгола в ЮАР).
К основным событиям завершающего этапа этого эона (неоархею) следует отнести превращение материка Ур в суперконтинент Кенорленд. Это произошло около 2,7 млрд лет назад. Позже, около 2,6 млрд лет назад, Кенорленд присоединился к суперконтиненту Арктида.
Следующей геологической эрой стал протерозой. Он продолжался 2 млрд лет и включал в себя: палеопротерозой, мезопротерозой и неопротерозой.
Что мы узнали?
Событий в архейской эре геологической истории Земли было не так уж и много, их всего можно перечислить в кратком сообщении, которое будет включать в себя характеристику четырех периодов этой эры и описание специфики каждого из них. В смысле флоры и фауны архейская эра самая бедная из четырех, зато она привела к образованию некоторых полезных ископаемых.
Архейская эра (Архей) – от 4,0 до 2,5 млрд. лет назад
Архейский эон, архей (др.-греч. ρχαος — древний) — один из четырёх эонов (отрезок времени геологической истории, в течение которого формировалась эонотема, объединяет несколько эр) истории Земли, охватывающий время от 4,0 до 2,5 млрд. лет назад. Термин «архей» предложил в 1872 году американский геолог Джеймс Дана. Архей разделён на четыре эры (от наиболее поздней до наиболее ранней):
В это время на Земле ещё не было кислородной атмосферы, но появились первые анаэробные организмы. В этот же период активно формируются многие ныне существующие залежи серы, графита, железа и никеля. Архей и последующий за ним Протерозой входят во временной период Докембрий.
Гидросфера и атмосфера: климат
В самом начале архейской эры воды на Земле было мало, вместо единого океана существовали лишь разрозненные мелководные бассейны. Температура воды достигала 70-90° C, что могло наблюдаться лишь в случае существования у Земли того времени плотной углекислотной атмосферы. Ведь из всех возможных газов только СО2 мог создать повышенное давление атмосферы (для архея — 8-10 бар).
Температура архейской атмосферы при парниковом эффекте достигала почти 120°С. Если бы при том же давлении атмосфера в архее состояла, например, только из азота, то приземные температуры были бы ещё выше и достигали 100°С, а температура при парниковом эффекте превышала бы 140° С.
Примерно 3,4 млрд. лет назад количество воды на Земле значительно увеличилось и возник Мировой океан, перекрывший гребни срединно-океанических хребтов. В результате заметно усилилась гидратация базальтовой океанической коры, а скорость роста парциального давления СО2 в позднеархейской атмосфере несколько снизилась. Наиболее радикальное падение давления СО2 произошло только на рубеже архея и протерозоя после выделения земного ядра и связанного с ним резкого уменьшения тектонической активности Земли.
Благодаря этому в раннем протерозое столь же резко сократились выплавки океанических базальтов. Базальтовый слой океанической коры стал заметно более тонким, чем он был в архее, и под ним впервые сформировался серпентинитовый слой — главный и постоянно обновляемый резервуар связанной воды на Земле.
Флора и фауна
В архейских отложениях отсутствует скелетная фауна, которая служит основой для построения стратиграфической шкалы фанерозоя, тем не менее разнообразных следов органической жизни здесь довольно много. К ним относятся продукты жизнедеятельности сине-зелёных водорослей — строматолиты, представляющие собой кораллоподобные осадочные образования (карбонатные, реже кремниевые), и продукты жизнедеятельности бактерий — онколиты.
Первые достоверные строматолиты были обнаружены лишь на рубеже 3,2 млрд. лет назад в Канаде, Австралии, Африке, на Урале и в Сибири. Хотя имеются свидетельства обнаружения остатков первых прокариот и строматолитов в отложениях возрастом 3,8-3,5 млрд. лет, в Австралии и Южной Африке.
Также в кремнистых породах раннего архея найдены своеобразные нитчатые водоросли, имеющие хорошую сохранность, при которой можно наблюдать детали клеточного строения организма. На многих стратиграфических уровнях встречаются мельчайшие округлые тельца (размером до 50 m) водорослевого происхождения, принимавшиеся ранее за споры. Они известны под названием “акритарх”, или “сфероморфид”.
Животный мир архея значительно беднее, чем растительный. Отдельные указания на нахождение в породах архея остатков животных относятся к объектам, которые, по- видимому, имеют неорганическое происхождение (Aticocania Walcott, Tefemar kites Dons, Eozoon Dawson, Brooksalla Bassler) или являются продуктами выщелачивания строматолитов (Carelozoon Metzger). Многие окаменелости архея до конца не расшифрованы (Udokania Leites) или не имеют точной привязки (Xenusion querswalde Pompecki).
Таким образом, в архейском зоне достоверно найдены прокариоты двух царств: бактерии, преимущественно хемосинтезирующие, анаэробные и фотосинтезирующие цианобионты, продуцирующие кислород. Не исключено, что в архее появились и первые эукариоты из царства грибов, морфологически сходные с дрожжевыми грибами.
Древнейшие бактериальные биоценозы, т.е. сообщества живых организмов, включавшие только продуцентов и деструкторов, были похожи на плёнки плесени (т.н. бактериальные маты), располагавшиеся на дне водоёмов или в их прибрежной зоне. Оазисами жизни часто служили и вулканические области, где на поверхность из литосферы поступали водород, сера и сероводород – основные доноры электронов.
На протяжении почти всей архейской эры живые организмы были одноклеточными, сильно зависимыми от природных факторов существами. И лишь на рубеже архея и протерозоя произошло два крупных эволюционных события: появились половой процесс и многоклеточность.
Гаплоидные организмы (бактерии и сине-зелёные водоросли) имеют один набор хромосом. Каждая новая мутация сразу же проявляется у них в фенотипе. Если мутация полезна, она сохраняется в процессе естественного отбора, если вредна, устраняется.
Гаплоидные организмы непрерывно приспосабливаются к среде, но принципиально новых признаков и свойств у них не возникает. Половой процесс резко повышает возможность приспособления к условиям среды, вследствие создания бесчисленных комбинаций в хромосомах. Диплоидность, возникшая одновременно с оформленным ядром, позволяет сохранить мутации и использовать их как резерв наследственной изменчивости для дальнейших эволюционных преобразований.
Архейская эра (4–2,5 млрд лет назад)
Самый древний этап жизни нашей планеты — архейская эра (от греческого «археос» — начало). Она началась около 4 млрд лет назад с бурлящих вулканов на раскаленной безжизненной Земле, на которую непрерывно падали метеориты из космоса, и продлилась примерно 1,5 млрд лет. К окончанию этого периода в морях нашей планеты уже появились первые живые существа. Именно с архейской эры начинается земная эволюция.
Вулканы и зарождение будущих континентов (4–3 млрд лет назад)
Когда в распоряжении науки появился радиоизотопный метод, стало возможным определять возраст геологических пород. Суть его в следующем. У большинства химических элементов есть изотопы — атомы с одинаковыми химическими свойствами, но отличающиеся числом нейтронов в ядре.
Изотопы, в отличие от обычных атомов, неустойчивы и рано или поздно распадаются на части. Никто не может предсказать, когда это произойдет, но статистически известно, за какой срок разрушается половина атомов в выбранном образце. Это время называется периодом полураспада, который для каждого из существующих изотопов известен с высокой точностью. Легко подсчитать, что после промежутка времени, равного двум периодам полураспада, останется 1/4 (1/2×1/2) атомов данного изотопа, а после n периодов полураспада останется 1/2n таких атомов.
Пока какой-либо материал еще формируется, он обменивается атомами (в том числе и изотопами) с окружающей средой, например когда животное питается (или формируется горная порода), оно получает помимо обычного углерода с атомной массой 12 (углерод-12) также изотоп с атомной массой 14 (углерод-14). При этом концентрация последнего в костях животного, окружающей среде, съедаемой пище и т. п. будет одинакова. После смерти животного (или после окончания формирования горной породы) обмен атомами с окружающей средой прекращается: новые уже не поступают в образец, а имеющиеся к моменту окончания формирования материала разрушаются в соответствии с периодами полураспада, известными для каждого вида изотопов. Так, в образце их становится все меньше.
Это означает, что, сравнив концентрацию изотопа данного вида в исследуемом материале и окружающей среде, можно подсчитать, как давно не поступают в него новые атомы изотопа, сколько времени (сколько периодов полураспада) прошло с момента его формирования (будь это останки живого организма или горная порода). В разных случаях удобно использовать подсчет по несхожим видам атомов — в основном применяют радиоуглеродный (основанный на уже рассмотренном нами соотношении углерод-14:углерод-12), калий-аргоновый и уран-свинцовый методы радиоизотопного анализа.
Изучив изотопный состав горных пород нашей планеты, можно с высокой точностью установить время их формирования. Такие исследования позволили разделить всю историю Земли на пять этапов — геологических эр. Каждую из них характеризуют определенные события, которые изменяли облик планеты и влияли на развитие биосферы.
Архейская эра — самый древний этап существования Земли. Физико-химические процессы в ее раскаленных недрах, которые сопровождала постоянная метеоритная бомбардировка, 4 млрд лет назад шли еще полным ходом. Однако тепловой поток уже не растекался в окружающем планету космосе, а задерживался формирующейся земной корой.
Наша планета разогревалась все больше и из-за этого снижалась ее плотность и должен был возрастать объем, чему препятствовала земная кора. Такие противоборствующие процессы проще понять, если представить себе туго накачанный мяч, жесткая оболочка которого сдерживает внутреннее давление.
Если оно станет слишком высоким, мяч может лопнуть — его оболочка порвется. Похожие процессы происходили с земной корой, которая 4–3,6 млрд лет назад начала давать трещины и медленно расползаться, выпуская на поверхность избыток расплавленного вещества недр. Конечно, прежде чем начать расходиться в разные стороны, земная кора и лежащий под ней верхний слой мантии должны были остыть и затвердеть, но еще глубже по-прежнему находилась расплавленная магма — она и стала подниматься на поверхность планеты по образовавшимся гранитным разломам.
В самом начале архея земная кора стала трескаться в разных местах. Многочисленные разломы расширялись. В неустойчивой еще земной коре стали появляться особо подвижные зоны — протогеосинклинали. Там и происходили самые бурные вулканические извержения, дававшие выход огромному количеству расплавленной базальтовой лавы. Архейская эра — время гигантских вулканов и мощнейших землетрясений, которые тревожили еще непрочную и тонкую оболочку планеты.
Обычно цепи вулканов находились в центре протогеосинклиналей. Первичная земная кора дробилась, между подвижными протогеосинклиналями возникали их противоположности — устойчивые плиты, которые называют протоплатформами. Водяные пары охлаждались высоко над землей, конденсировались в огромные облака и проливались дождем на разогретые скалы. Потоки воды собирались в глубоких расширяющихся трещинах земной коры — так появлялись обширные водные пространства.
Раскаленная лава мчалась вниз с огнедышащих гор, впадала в новообразованные моря и океаны — гигантские столбы водяного пара поднимались высоко в атмосферу. Грозно и неприветливо выглядела юная планета! Если бы 3–3,5 млрд лет назад на архейскую Землю ступил человек, он был бы поражен обилием гигантских вулканов, безбрежными океанами, в которых все время бушевали цунами (огромные волны, вызываемые подводными землетрясениями), и постоянными движениями земной коры.
Бурные геологические процессы архейской эры создали для будущего человечества неисчислимые запасы полезных ископаемых. Вулканы выплескивали на поверхность Земли магму, богатую металлами, — так появились месторождения медной и железной руды, обширные залежи гранитов. Вдоль образовавшихся глубоких разломов земной коры начиналось новое накопление осадочных горных пород.
На странной Земле архейского периода не было континентов, ведь ее кора еще находилась в постоянном движении. Только миллионы вулканов, изливая на поверхность невероятное количество лавы, медленно образовывали горы и каменные плоскогорья, а разломы, покрывавшие поверхность, создавали глубокие океанические впадины.
Уже в архейскую эру, как мы знаем, появились протоплатформы — островки устойчивости между постоянно колеблющимися протогеосинклиналями. Эти неподвижные плиты положили начало древнейшим ядрам континентов — щитам. Принято считать, что примерно 3,5 млрд лет назад в архее на Земле возник самый ранний из них — гигантский Ваальбара. Он просуществовал около 700 млн лет и раскололся на сегменты, которые стали отдельными участками тверди.
В эту бурную геологическую эру великих потрясений сформировалась некоторая доля современной континентальной коры. Пока нельзя сказать, какая именно: по разным методам измерения получается от 5 до 40%, что составляет различие в восемь раз. Вот как мало мы еще знаем о древнейшем периоде развития Земли!
Изменение климата — путь к возникновению жизни (4–3,6 млрд лет назад)
Молодая планета, сотрясаемая подземными толчками, озаряемая огнем вулканов и почти полностью лишенная атмосферного кислорода, вращалась вокруг собственной оси гораздо быстрее, чем сегодня. Сутки архейской эры (полный оборот Земли вокруг своей оси) составляли всего девять часов. Календарный год включал девятьсот таких коротких временных промежутков.
Луна находилась намного ближе к нашей планете, и ее воздействие на земные процессы было более существенным, чем сегодня. Пробиваясь сквозь густые облака, свет огромного спутника озарял безжизненную Землю. Гидросфера на земной поверхности в самом начале архея была представлена достаточно скромно: разрозненные мелкие водоемы покрывали впадины коры — они еще не успели слиться в единый океан. Температура воды в таких озерах достигала 70–90 °C, поэтому время для возникновения жизни пока не наступило.
Атмосфера архея была менее плотной, чем современная (этим и объясняется обилие метеоритов, достигавших земной поверхности). Кислород, как мы уже отметили, в воздухе почти не содержался, азот составлял намного меньшую часть, чем теперь (всего лишь 10–15%), большинство других газов быстро разлагалось под действием жесткой солнечной радиации. В атмосфере, которая тогда существовала, господствовал углекислый газ, и из-за этого создавался сильнейший парниковый эффект, температура могла достигать 120 °C и более.
Парниковым эффектом называется ситуация, когда солнечный луч, который проникает через атмосферу, отражается от поверхности планеты и уже не может уйти в космическое пространство, так как богатая углекислым газом воздушная оболочка не выпускает его наружу. Большая часть тепловой энергии, поступающей на Землю, остается в пределах атмосферы, постоянно нагревая и воздух, и земную поверхность. Однако к концу архейской эры содержание углекислого газа значительно снизилось.
Обильные ливни и конденсация водяных паров неуклонно увеличивали количество воды на Земле. Мелкие озера сливались в единый океан, поднимая его уровень и затопляя целые хребты молодых гор. Из гранитов, слагавших земную кору, вымывались оксид кремния, соли угольной кислоты, соединения железа, марганца и, конечно же, углекислый газ.
Как считают ученые, уровень солей в первичном океане был еще не очень высок — не более 2,5 %, в то время как в современных океанах достигает примерно 3,5 %.
Когда на нашей планете сформировались воздушная и водная оболочки, возникли и климатические пояса — солнечное тепло уже не одинаково нагревало все земные широты. Мы можем судить о существовании таких зон архейской эры по обнаруженным в Сибири, Северной Америке и Центральной Африке тиллитам — отложениям древних ледниковых пород. На основании этого открытия был сделан вывод о том, что в архейскую и последовавшую за ней протерозойскую эры уже происходили оледенения Земли. Когда же между периодами похолодания все таяло, появлялись озера ледникового происхождения.
В те далекие времена льды, вероятно, сковывали только горные хребты, которые высоко поднимались над поверхностью планеты. В других, равнинных зонах, скорее всего, оставался достаточно теплый климат.
При сохранении пока еще бескислородной атмосферы изменения климата, происходившие на Земле 4–3,6 млрд лет назад, подготовили условия, в которых смогли появиться сложные органические молекулы, а впоследствии — возникнуть первые примитивные формы жизни.
Загадка появления жизни на Земле (3,8–3,3 млрд лет назад)
Зарождение жизни, возникновение на Земле первых примитивных одноклеточных организмов было одним из важнейших событий архейской эры.
Сами одноклеточные существа, конечно, не могли сохраниться в окаменевшем виде, но обнаружены древнейшие (3,5–3,6 млрд лет назад) горные породы, химический состав которых свидетельствует о работе микроорганизмов. В этих породах содержится много графита, который получился в результате химических превращений тех веществ, из которых состояли первые на земле живые организмы. Принято считать, что в архейскую эру на Земле появились одноклеточные прокариоты — бактерии и сине-зеленые водоросли. Об этом мы можем судить, изучая многочисленные следы их жизнедеятельности, которые сохранились в отложениях древнейших пород.
В раннем архее условия на Земле очень отличались от современных: температура воздуха и земной поверхности достигала 95–140 °C, а кислорода не было. Попробуйте представить себе перегретую баню, из которой откачан воздух, а взамен него смесь ядовитых газов — место для жизни, что и говорить, не очень уютное. Очевидно, что привычные для нас формы жизни не могли появиться в подобной ситуации. Организмам, которые дышат кислородом, на такой планете явно делать нечего. Однако жизнь, несмотря на это, уже существовала, и она была тоже бескислородной! Бескислородные, или анаэробные (от греческих слов «ан» — отрицательная частица, «аер» — воздух и «биос» — жизнь), существа живут рядом с нами и по сей день.
Есть веские основания считать их самыми первыми обитателями Земли. В основном анаэробы составляют особую группу организмов, которая настолько не похожа на все прочие формы жизни, что выделена биологами в отдельное царство живых существ с говорящим названием архебактерии. С тех древних времен они не изменили своих свойств: большинство архебактерий и поныне анаэробы, многие из них способны находиться в таких экстремальных условиях, где иным формам жизни не место, например в горячих источниках.
Кроме открытых Пастером организмов, живущих в масле, к анаэробам относятся бактерии почвы, глубин океана, горячих источников.
Изучая осадочные породы архейской эры, исследователи обнаружили, что часть из них имеет органическое происхождение и содержит компоненты, которые неустойчивы в присутствии кислорода воздуха. Это и положило начало гипотезе о существовании анаэробов в архейскую эру. Таким образом, первые живые существа нашей планеты не нуждались в кислороде для дыхания. Выработанную в различных химических превращениях энергию они научились запасать в виде аденозинтрифосфорной кислоты (АТФ), которая и сегодня является «молекулой-аккумулятором» энергии для всех живых существ (уже не только анаэробных. Эту книгу, например, вы сейчас читаете за счет запасов энергии, которая хранится в АТФ клеток глаз и мозга).
Размножаясь, первые анаэробы смогли достаточно быстро занять все пригодные для жизни на Земле того времени места обитания. Их дальнейший рост стал сдерживаться нехваткой пищи. Вероятно, именно в этот момент живым организмам пришлось переключиться на новый источник энергии — кислород, количество которого в атмосфере и водах все возрастало.
Как же произошло зарождение жизни — важнейшее событие в истории не только нашей планеты, но и всей Солнечной системы?
Наиболее убедительной гипотезой на данный момент является версия биохимической эволюции, предложенная еще в 1924 г. русским ученым, академиком Александром Ивановичем Опариным в книге «Происхождение жизни».
Ученый предложил объяснение того, как под воздействием химических и физических факторов первые одноклеточные формы жизни могли появиться из неживой материи. Как мы знаем, атмосфера архейской Земли была богата аммиаком, оксидами углерода и водяным паром. В более низких концентрациях в ней также присутствовали водород, азот и кислород. Таким образом, основные химические элементы, необходимые для сборки биологически активных молекул, к тому времени уже были доступны, а ультрафиолетовое излучение Солнца могло служить неисчерпаемым источником энергии для химических превращений. Энергия внутреннего тепла Земли (вулканических извержений), могучих грозовых разрядов и радиоактивного распада также, вероятно, участвовала в синтезе сложных молекул из более простых.
По мнению Опарина, биохимическая эволюция могла протекать в три этапа. На первом этапе происходил интенсивный синтез органических (то есть основанных на цепочках углерода) веществ из неорганических предшественников. Соли, растворенные в архейском океане, и атмосферные газы служили реагентами в гигантском химическом реакторе — литосфере древней Земли.
Часть органических молекул могла также возникать под действием грозовых разрядов, ультрафиолетовой радиации и тепла в атмосфере. В конечном итоге вся органика, синтезированная за миллионы лет, скапливалась в океане, ее концентрация в воде росла. Безжизненный океан стал «питательным бульоном», в котором могли появиться биологически активные молекулы белков (пептидов).
На втором этапе они появляются! Все те же источники энергии в виде ультрафиолета и электрических разрядов могли способствовать объединению коротких молекул (мономеров) в длинные цепочки-полимеры. Первичные органические молекулы объединялись, приобретали более сложную структуру и давали начало пробионтам — предкам живых организмов. В результате эволюции пробионты соединялись в коацерватные капли (или коацерваты — от латинского coacervātus — «собранный в кучу»), то есть в отдельно существующие структуры с высокой концентрацией сложных молекул. Коацерваты еще не были ни клетками, ни живыми существами вообще, но они уже поглощали нужные им вещества из окружающей их среды, взаимодействовали между собой, росли. От настоящих живых организмов их пока отличала неспособность размножаться.
На последнем третьем этапе эта способность у них появляется — различие между коацерватными каплями и клетками окончательно стирается. Капли конкурировали между собой за доступные питательные вещества и энергию — как и все живые организмы, они подвергались естественному отбору. Внутри капли, отделенной от окружающего мира слоем молекул, напоминавшим примитивную мембрану, происходили сложные химические процессы, характерные для метаболизма клеток. Вырастая до определенных размеров, капля делилась и давала начало дочерним образованиям, которые сохраняли ее свойства. Началось самовоспроизводство живых существ на Земле. Коацерватные капли стали первыми примитивными одноклеточными организмами.
Прямого экспериментального подтверждения гипотезы Опарина не существует, да и вряд ли оно появится — воспроизвести эволюционные процессы, на которые потребовались десятки миллионов лет, в лабораторных условиях непросто. Однако в 1953 г. два американских химика, Стэнли Миллер и Гарольд Юри, поставили красивый эксперимент, в ходе которого были добыты косвенные доказательства правоты Опарина. Идея ученых заключалась в том, чтобы воссоздать в лабораторной установке предполагаемые условия архейской Земли. Через смесь растворенных веществ и газов (аммиака, метана, водорода, монооксида углерода и водяных паров), характерных, как принято считать, для древних гидро- и атмосферы, пропускали электрические разряды («вспышки молнии»), подогревали ее («тепло вулканов») и облучали ультрафиолетом («солнечное излучение»).
Эксперимент был на редкость удачным, но и после него осталось немало загадок. Вот одна из них. Пусть получены и аминокислоты (составные части белков), и предшественники нуклеиновых кислот. Допустим, за миллионы лет (вместо недели) получились бы полноценные белки и нуклеиновые кислоты. В живой клетке нуклеиновые кислоты кодируют состав белка (последовательность сборки аминокислот), а белки помогают самовоспроизводству нуклеиновых кислот (репликации ДНК и транскрипции РНК). Однако как и те, и другие соединения смогли «договориться» о взаимной помощи? Этот важнейший для биологии вопрос пока остается без ответа.
Анализ результатов показал, что всего за неделю искусственного архея 10–15% углерода перешло в форму сложных органических молекул, среди них были 22 аминокислоты, сахара, липиды и предшественники нуклеиновых кислот, то есть практически все, что потребовалось бы для «сборки» живой клетки. Хотя их самих, разумеется, получено не было.
Первые живые организмы (3,5–2,5 млрд лет назад)
В распоряжении современной науки, как мы уже подчеркивали, имеются не сами останки древних одноклеточных организмов, а продукты их деятельности в виде некоторых минералов. Это позволило сделать вывод о том, что в архейскую эру уже сформировались бактерии и сине-зеленые водоросли. Принято считать, что возникновение жизни на Земле вскоре привело к появлению трех царств живых существ: архебактерий, современных бактерий (эубактерий) и надцарства (включающего согласно классификации несколько царств) эукариот. К последним относятся те, чьи клетки имеют более сложную организацию, — они включают окруженное мембраной ядро, содержащее ДНК в виде хромосом.
В составе цитоплазмы эукариотических клеток есть высокоразвитые органеллы (митохондрии, хлоропласты, эндоплазматический ретикулум и др.), которых нет у бактерий. Эукариоты — это царства животных, растений и грибов (которых в архейскую эру еще не было) и одноклеточных простейших (которые уже могли существовать).
В ходе эволюции ни архебактерии (жители бескислородной среды того времени), ни эубактерии не дали начала новым формам жизни. Эта участь выпала только эукариотам — простейшим архейских морей.
В архейских отложениях в Австралии найдены строматолиты (от греческих слов «строма» — подстилка и «литос» — камень) — слоистые включения большой плотности в известняках и доломитах. Строматолиты принято считать результатом жизнедеятельности сине-зеленых водорослей.
Однажды появившись, сине-зеленые водоросли стали обогащать атмосферу кислородом.
В конце архея эволюция вплотную приступила к созданию важнейших для живых существ приспособлений полового процесса и многоклеточности. Разговор о них впереди.