Архитектура arm что это
ARM против x86: В чем разница между двумя архитектурами процессоров?
Вы наверняка знаете, что мир процессоров разбит на два лагеря. Если вы смотрите это видео со смартфона, то для вас работает процессор на архитектуре ARM, а если с ноутбука, для вас трудится чип на архитектуре x86.
А теперь еще и Apple объявила, что переводит свои Mac на собственные процессоры Apple Silicon на архитектуре ARM. Мы уже рассказывали, почему так происходит. А сегодня давайте подробно разберемся, в чем принципиальные отличия x86 и ARM. И зачем Apple в это все вписалась?
Итак, большинство мобильных устройств, iPhone и Android’ы работают на ARM’е. Qualcomm, HUAWEI Kirin, Samsung Exynos и Apple A13/A14 Bionic — это все ARM-процессоры.
А вот на компьютере не так — там доминирует x86 под крылом Intel и AMD. Именно поэтому на телефоне мы не можем запустить Word с компьютера.
x86 — так называется по последним цифрам семейства классических процессоров Intel 70-80х годов.
Чем же они отличаются?
Есть два ключевых отличия.
Первое — это набор инструкций, то есть язык который понимает процессор
Второе отличие — это микроархитектура. Что это такое?
От того на каком языке говорят процессоры, зависит и то, как они проектируются. Потому как для выполнения каждой инструкции на процессоре нужно расположить свой логический блок. Соответственно, разные инструкции — разный дизайн процессора. А дизайн — это и есть микроархитектура.
Но как так произошло, что процессоры стали говорить на разных языках?
История CISC
Памятка программиста, 1960-е годы. Цифровой (машинный) код «Минск-22».
Всё началось в 1960-х. Поначалу программисты работали с машинным кодом, то есть реально писали нолики и единички. Это быстро всех достало и появился Assembler. Низкоуровневый язык программирования, который позволял писать простые команды типа сложить, скопировать и прочее. Но программировать на Assembler’е тоже было несладко. Потому как приходилось буквально “за ручку” поэтапно описывать процессору каждое его действие.
Поэтому, если бы вы ужинали с процессором, и попросили передать его вам соль, это выглядело бы так:
Этот подход стал настоящим спасением как для разработчиков, так и для бизнеса. Захотел клиент новую инструкцию — не проблема, были бы деньги — мы сделаем. А деньги у клиентов были.
Недостатки CISC
Но был ли такой подход оптимальным. С точки зрения разработчиков — да. Но вот микроархитектура страдала.
Представьте, вы купили квартиру и теперь вам нужно обставить её мебелью. Площади мало, каждый квадратный метр на счету. И вот представьте, если бы CISC-процессор обставил мебелью вам гостиную, он бы с одной стороны позаботился о комфорте каждого потенциального гостя и выделил бы для него своё персональное место.
С другой стороны, он бы не щадил бюджет. Диван для одного человека, пуф для другого, кушетка для третьего, трон из Игры Престолов для вашей Дейенерис. В этом случае площадь комнаты бы очень быстро закончилась. Чтобы разместить всех вам бы пришлось увеличивать бюджет и расширять зал. Это не рационально. Но самое главное, CISC-архитектура существует очень давно и те инструкции, которые были написаны в 60-х годах сейчас уже вообще не актуальны. Поэтому часть мебели, а точнее исполнительных блоков, просто не будут использоваться. Но многие из них там остаются. Поэтому появился RISC…
Преимущества RISC
С одной стороны писать на Assembler’е под RISC процессоры не очень-то удобно. Если в лоб сравнивать код, написанный под CISC и RISC процессоры, очевидно преимущество первого.
Так выглядит код одной и той же операции для x86 и ARM.
Представьте, что вы проектируете процессор. Расположение блоков на х86 выглядело бы так.
Каждый цветной квадрат — это отдельные команды. Их много и они разные. Как вы поняли, здесь мы уже говорим про микроархитектуру, которая вытекает из набора команд. А вот ARM-процессор скорее выглядит так.
Ему не нужны блоки, созданные для функций, написанных 50 лет назад.
По сути, тут блоки только для самых востребованных команд. Зато таких блоков много. А это значит, что можно одновременно выполнять больше базовых команд. А раритетные не занимают место.
Еще один бонус сокращенного набора RISC: меньше места на чипе занимает блок по декодированию команд. Да, для этого тоже нужно место. Архитектура RISC проще и удобнее, загибайте пальцы:
Поэтому наши смартфоны, которые работают на ARM процессорах с архитектурой RISC, долго живут, не требуют активного охлаждения и такие быстрые.
Лицензирование
Но это все отличия технические. Есть отличия и организационные. Вы не задумывались почему для смартфонов так много производителей процессоров, а в мире ПК на x86 только AMD и Intel? Все просто — ARM это компания которая занимается лицензированием, а не производством.
Даже Apple приложила руку к развитию ARM. Вместе с Acorn Computers и VLSI Technology. Apple присоединился к альянсу из-за их грядущего устройства — Newton. Устройства, главной функцией которого было распознавание текста.
Даже вы можете начать производить свои процессоры, купив лицензию. А вот производить процессоры на x86 не может никто кроме синей и красной компании. А это значит что? Правильно, меньше конкуренции, медленнее развитие. Как же так произошло?
Ну окей. Допустим ARM прекрасно справляется со смартфонами и планшетами, но как насчет компьютеров и серверов, где вся поляна исторически поделена? И зачем Apple вообще ломанулась туда со своим Apple Silicon.
Что сейчас?
Допустим мы решили, что архитектура ARM более эффективная и универсальная. Что теперь? x86 похоронен?
На самом деле, в Intel и AMD не дураки сидят. И сейчас под капотом современные CISC-процессоры очень похожи на RISC. Постепенно разработчики CISC-процессоров все-таки пришли к этому и начали делать гибридные процессоры, но старый хвост так просто нельзя сбросить.
Но уже достаточно давно процессоры Intel и AMD разбивают входные инструкции на более мелкие микро инструкции (micro-ops), которые в дальнейшем — сейчас вы удивитесь — исполняются RISC ядром.
Да-да, ребята! Те самые 4-8 ядер в вашем ПК — это тоже RISC-ядра!
Надеюсь, тут вы окончательно запутались. Но суть в том, что разница между RISC и CISC-дизайнами уже сейчас минимальна.
А что остается важным — так это микроархитектура. То есть то, насколько эффективно все организовано на самом камне.
Ну вы уже наверное знаете, что Современные iPad практически не уступают 15-дюймовым MacBook Pro с процессорами Core i7 и Core i9.
А что с компьютерами?
Недавно компания Ampere представила свой 80-ядерный ARM процессор. По заявлению производителя в тестах процессор Ampere показывает результат на 4% лучше, чем самый быстрый процессор EPYC от AMD и потребляет на 14% меньше энергии.
Компания Ampere лезет в сегменты Cloud и Workstation, и показывает там отличные цифры. Самый быстрый суперкомпьютер в мире сегодня работает на ARM ISA. С обратной стороны, Intel пытается все таки влезть в сегмент low power и для этого выпускает новый интересный процессор на микроархитектуре lakefield.
И Apple та компания, которая способна мотивировать достаточное количество разработчиков пилить под свой ARM. Но суть этого перехода скорее не в противостоянии CISC и RISC. Поскольку оба подхода сближаются, акцент смещается на микроархитектуру, которую делает Apple для своих мобильных устройств. И судя по всему микроархитектура у них крута. И они хотели бы ее использовать в своих компьютерах.
И если бы Intel лицензировал x86 за деньги другим людям, то вероятно Apple просто адаптировали свою текущую микроархитектуру под x86. Но так как они не могут этого сделать, они решили просто перейти на ARM. Проблема для нас с микроархитектурой в том, что она коммерческая тайна. И мы про нее ничего не знаем.
Итоги
Спрос на ARM в итоге вырастет. Для индустрии это не просто важный шаг, а архиважный. Линус Торвальдс говорил, что пока рабочие станции не станут работать на ARM — на рынке серверов будут использовать x86.
И вот это случилось — в перспективе это миллионы долларов, вложенных в серверные решения. Что, конечно, хорошо и для потребителей. Нас ждет светлое будущее и Apple, действительно, совершила революцию!
Редактор материала: Антон Евстратенко. Этот материал помогли подготовить наши зрители Никита Куликов и Григорий Чирков. Спасибо ребята!
Почему мы используем платформу ARM в промышленном оборудовании
Сегодня почти каждый из нас использует устройства на базе ARM-процессоров — это смартфоны, телевизоры и даже холодильники с кофеварками. Несколько дней назад в прессу просочились слухи, что компания Apple объявит о переходе с платформы X86 на ARM на своих ноутбуках.
Мы в Advantech уже много лет производим устройства на платформе ARM и на это множество причин. В этой статье мы разберем что такое ARM (от англ. Advanced RISC Machine), в чем ее отличие от других архитектур и почему все больше производителей выбирает эту архитектуру.
Наборы инструкций RISC vs CISC
Для начала следует разобраться в чем принципиальное отличие процессоров ARM и X86. Для того, чтобы программисты смогли писать программы, работающие на разных процессорах, производители договорились унифицировать набор машинных инструкций до определенного формата и соблюдать его в разных моделях своих процессоров. Машинные инструкции это низкоуровневые команды, которые отвечают за базовые операции вроде записи/чтения/модификации данных в памяти, арифметику и т.д.
Существует несколько основных концепций, используемых при проектировании процессоров. Наиболее популярные и широко известные всем это RISC и CISC.
CISC (англ. Complex Instruction Set Computing) — этот подход используется для разработки универсальных и мощных процессоров, которые обычно используются в десктопных компьютерах и на серверах. Такие процессоры как Intel CoreiN/Xeon/Pentium, AMD Ryzen/Atlhon/Sempron и прочие хорошие знакомые процессоры имеют набор инструкций типа CISC, оформленную в виде стандарта x86.
Основные особенности концепции CISC:
RISC (англ. reduced instruction set computer) — противоположная концепция проектирования процессоров. В RISC команды максимально упрощены и имеют более строгий формат и фиксированную длину. За счет упрощенных инструкций достигается высокая производительность при малом энергопотреблении. Процессоры RISC требуют от программиста большой контроль над выполнением кода, так как не имеют встроенных микропрограмм, работающих внутри процессора. Архитектура ARM (от англ. Advanced RISC Machine — усовершенствованная RISC-машина) это продолжение идеи архитектуры RISC развиваемое компанией ARM Limited. Сегодня множество компаний производят свои собственные ARM процессоры по лицензии от ARM Limited — например, популярные в смартфонах Qualcomm Snapdragon, Mediatek, Allwiner, Apple An/Hn а также популярные во встраиваемых системах Freescale i.MX, Broadcom, Nvidia Tegra и другие.
Основные особенности концепции RISC:
X86 медленно развивается
Последнее десятилетие существенных инноваций в архитектуре X86 не наблюдается. Да, производители наращивают тактовую частоту и пытаются снижать энергопотребление, но такие процессоры по-прежнему остаются прожорливыми духовками, требующими много энергии и серьезную систему охлаждения. Именно поэтому мы, скорее всего, никогда не увидим смартфонов на X86 процессорах. Производители X86 процессоров пытаются наращивать мощность с помощью масштабирование в ширину: больше ядер, кеша и частот.
Современные X86 процессоры имеют десятки ядер
Попытки Intel создать энергоэффективный X86-процессор Atom были достаточно успешны, но кроме маломощных десктопов, ноутбуков и встраиваемых систем, этот процессор мало для чего подходит.
ARM это экономично и современно
Современные ARM-процессоры развиваются очень быстро. Каждый год выходят чипы существенно лучше своих предшественников. На данный момент средняя производительность ARM чипов все еще остается ниже X86, но в некоторых синтетических тестах они уже почти сравнялись.
Совершенно очевидно, что в будущем наши ноутбуки, и, возможно, десктопные компьютеры, будут работать на ARM-процессорах. Переходов ноутбуков Apple на собственные ARM-процессоры должно дать большой толчок всей индустрии в этом направлении.
Основные достоинства процессоров ARM:
Устройства Advantech на платформе ARM
Advantech давно производит продукты на базе платформы ARM для разных отраслей и задач. От промышленных контроллеров, до сетевого оборудования и компактных компьютеров. Мы уже рассказывали о некоторых наших продуктах на ARM в других статьях.
WISE-710 — IoT-шлюз на базе i.MX6
WISE-710 — универсальное устройство, которое одновременно может быть шлюзом для промышленных интерфейсов, устройством сбора и обработки данных, хабом для IoT устройств и маршрутизатором. Построено на базе SoC i.MX6, процессора на архитектуре ARM Cortex-A7.
ECU-1152 — Шлюз для промышленных интерфейсов на базе ARM Cortex A8
ECU-1152 — шлюз для промышленных интерфейсов а также устройство для связи с объектом и устройства сбора и передачи данных с объекта. Построено на базе процессора ARM процессора с ядром Cortex A8
Миниатюрный ARM-компьютер UNO-1251G
UNO-1251G — крохотных компьютер, умещающийся на DIN-рейку, на базе 32-битного процессора Cortex A8 под управлением Linux или Windows CE. Поддерживает модули расширения Wi-Fi/3G/4G. Имеет встроенную CAN-шину и два интерфейса RS-232. Два порта LAN позволяют подключать его к двум независимым Ethernet сетям или использовать как маршрутизатор.
Компьютеры для машинного обучения на базе Nvidia Jetson
MIC-720AI — построен на базе платформы Jetson TX2, работающей на собственных ядрах Nvidia ARM Cortex-A57 и NVIDIA Denver 2 с полностью пассивным охлаждением. Предназначен для установки в промышленные системы машинного зрения, на производстве и в подвижных объектах. Безвентиляторная конструкция обеспечивает полную бесшумность в работе и позволяет использовать компьютер в пыльных помещениях без необходимости обслуживания. Работает под управлением Linux
Будущее за ARM
Наверняка архитектура X86 с нами еще надолго. Все профессиональные высокопроизводительные вычисления пока делаются на этой платформе. Под X86 написаны основные десктопные операционные системы и прикладные программы. Однако уже сегодня ARM активно вытесняет устаревший X86 даже в сфере больших вычислений. Платформы вроде Nvidia Jetson сравнимы по производительности, а в некоторых задачах и превосходят системы на базе X86. Так что нас обязательно ждет яркое противостояние двух платформ, от которой в конечном счете потребители только выиграют.
Расскажите, как вы используете ARM-процессоры сегодня или как планируете использовать в будущем.
ARM-ы для самых маленьких
Пару дней назад я опубликовал и потом внезапно убрал в черновики статью о плане написать про создание своей ОС для архитектуры ARM. Я сделал это, потому что получил много интересных отзывов как на Хабре, так и в G+.
Сегодня я попробую подойти к вопросу с другой стороны, я буду рассказывать о том, как программировать микроконтроллеры ARM на нарастающих по сложности примерах, пока мы не напишем свою ОС или пока мне не надоест. А может, мы перепрыгнем на ковыряние в Contiki, TinyOS, ChibiOS или FreeRTOS, кто знает, их там столько много разных и интересных (а у TinyOS еще и свой язык программирования!).
Итак, почему ARM? Возиться с 8-битными микроконтроллерами хотя и интересно, но скоро надоедает. Кроме того, средства разработки под ARM обкатаны долгим опытом и намного приятнее в работе. При этом, начать мигать светодиодами на каком-то «evaluation board» так же просто, как и на Arduino.
Небольшой экскурс в архитектуру
ARM продвигает замечательную архитектуру, которую успешно лицензирует, мне на самом деле сложно представить, в каком устройстве нет никакого присутствия продуктов этой компании. В вашем смартфоне гарантированно есть несколько ядер на базе архитектуры ARM. Еще парочка найдется в современном ноутбуке (и это даже не CPU, а так, сопутствующий контроллер какой-либо периферии), еще несколько – в автомобиле. Есть они и в других бытовых вещах: микроволновках и телевизорах.
Такая гибкость достигается тем, что в самом базовом варианте ядро ARM очень простое. Сейчас существуют три разновидности этой архитектуры. Application применяется в устройствах «общего назначения» – как основной процессор в смартфоне или нетбуке. Этот профиль самый навороченный функционально, тут есть и полноценный MMU (модуль управления памятью), возможность аппаратно выполнять инструкции Java bytecode и даже поддержка DRM-схем. Microcontroller – это полная противоположность профилю application, применяемая (внезапно!) для использования в микроконтроллерах. Тут актуально минимальное энергопотребление и детерминистическое поведение. И, наконец, real-time используется как эволюция профиля microcontroller для задач, где критично иметь гарантированное время отклика. Все эти профили получили реализацию в одном или нескольких ядрах Cortex, так, например, Cortex-A9 основан на профиле application и является частью процессора в iPhone 4S, а Cortex-M0 основан на профиле microcontroller.
Железки!
В качестве целевой платформы мы будем рассматривать работу с Cortex-M, так как она самая простая, соответственно, надо вникать в меньшее количество вопросов. В качестве тестовых устройств я предлагаю вам LPC1114 – MCU производства NXP, схему на котором можно собрать буквально на коленке (нет, правда, вам нужен только сам MCU, FTDI-кабель на 3,3 В, несколько светодиодов и резисторов). LPC1114 построен на базе Cortex-M0, так что это будет самый урезанный вариант платформы.
В качестве альтернативного варианта мы будем работать с платформой mbed, а конкретно, с моделью на базе LPC1768 (а значит, внутри там Cortex-M3, несколько более навороченный). Вариант уже не настолько бюджетный, но процесс заливки бинарников на чип и отладки упрощен максимально. Да и можно поиграться с самой платформой mbed (вкратце: это онлайн-IDE и библиотека, с помощью которой можно программить на уровне ардуины).
Приступим
Интересной особенностью современных ARM-ов является то, что их вполне реально программировать целиком на С, без применения ассемблерных вставок (хотя ассемблер не так уж и сложен, у Cortex-M0 всего 56 команд). Хотя некоторые команды в принципе не доступны из С, эту проблему решает CMSIS – Cortex Microcontroller Software Interface Standard. Это драйвер для процессора, который решает все основные задачи управления им.
Как же загружается процессор? Типична ситуация, когда он просто начинает выполнять команды с адреса 0x00000000. В нашем случае процессор несколько более умный, и рассчитывает на специально определенный формат данных в начале памяти, а именно – таблицу векторов прерываний:
Старт выполнения программы происходит следующим образом: процессор читает значение по адресу 0x00000000 и записывает его в SP (SP – регистр, который указывает на вершину стека), после чего читает значение по адресу 0x00000004 и записывает его в PC (PC – регистр, который указывает на текущую инструкцию + 4 байта). Таким образом начинает выполняться какой-то код пользователя, при этом у нас уже есть стек, указывающий куда-то в память (т.е., все условия для выполнения программы на С).
В качестве тестового упражнения мы будем мигать светодиодом. На mbed у нас их целых четыре, в схему с LPC1114 (далее — «доска») мы устанавливаем светодиод вручную.
Перед тем как непосредственно писать код, нам надо выяснить еще одну вещь, а именно – что где должно располагаться в памяти. Поскольку мы не работаем с какой-то «стандартной» ОС, то компилятор (вернее, компоновщик) не может узнать, где у него должен быть стек, где сам код, а где — куча. К счастью для нас, у семейства ядер Cortex стандартизированная карта памяти, что позволяет относительно просто портировать приложения между разными процессорами этой архитектуры. Работа с периферией, конечно, остается процессорозависимой.
Карта памяти для Cortex-M0 выглядит вот так:
У Cortex-M3 она, по сути, такая же, но несколько более детальна. Проблема тут в том, что у NXP есть свой, отдельный взгляд на этот вопрос, так что проверяем карту памяти в документации на процессор:
На самом деле, SRAM у нас начинается с 0x10000000! Вот так, одни стандарты, другие стандарты, а все равно надо тома документации листать.
Вооружившись этими знаниями, идем писать код. Для начала – таблица прерываний:
Сама таблица должна бы быть длиннее, но на самом деле мы могли бы закончить ее еще после вектора Reset, остальные у нас не сработали бы в этом примере. Но, на всякий случай, мы заполнили таблицу почти целиком (кроме пользовательских прерываний).
Теперь напишем реализацию функции main:
У mbed первый светодиод подключен к порту GPIO 1.18, на доске мы подключили светодиод к GPIO 1.8. Одни и те же пины могут выполнять разные функции, эти по умолчанию работают именно как GPIO (General Purpose I/O – линии ввода/вывода общего назначения).
Код относительно прямолинеен, если держать под рукой LPC-шный User manual (один и второй). Для начала мы указываем режим работы GPIO через регистр GPIO_DIR_REG (у наших процессоров они в разных местах, да и вообще LPC1768 может работать с GPIO более эффективно), где 1 – вывод, 0 – ввод. Потом мы запускаем бесконечный цикл, в котором пишем в порт попеременно значения 0 и 1 (0 В и 3,3 В соответственно).
Функция для «паузы» у нас работает наугад, просто прокручивая относительно долгий цикл ( volatile int не дает компилятору выоптимизировать этот цикл целиком).
Наконец, все это нужно правильно скомпоновать:
Теперь у нас есть три файла: boot.s, main.c, mem.ld, пора это все скомпилировать и, наконец, запустить. В качестве тулчейна мы будем использовать GCC, позже, возможно, я покажу как делать то же с LLVM. Пользователям OS X я советую взять тулчейн у Linaro – в самом конце списка: Bare-Metal GCC ARM Embedded. Пользователям других ОС я советую взять тулчейн там же 🙂 (разве что гентушникам будет проще сэмержить crossdev и скомпилить GCC).
Интересный момент тут — это отключение использования всех стандартных библиотек у GCC. Действительно, весь код, который попадет в итоговый бинарник – это код, который написали мы сами.
Вопрос: как компоновщик знает, куда надо засунуть таблицу прерываний? А он и не знает, там не написано :-). Он просто линкует подряд, начиная с нулевого адреса, так что порядок файлов (boot.o, потом main-c0.o) очень важен! Попробуйте слинковать наоборот или слинковать boot.o два раза и сравните вывод в lst-файле.
Хорошая идея – посмотреть на итоговый листинг (файл lst) или закинуть бинарник в дизассемблер. Даже если вы не говорите на ARM UAL, то чисто визуально можно проверить, что хотя бы таблица прерываний находится на своем месте:
Еще можно обратить внимание на забавный момент – GCC при компиляции под Cortex-M3 генерирует функцию wait() больше, чем в варианте под Cortex-M0. Правда, если включить оптимизацию то она вправит ему мозги.
Мигаем!
Все что нам осталось – залить бинарники на наши тестовые платформы. С mbed тут все максимально просто, просто скопируйте blink-c3.bin на виртуальную флешку и нажмите reset (на mbed). С доской все немного сложнее. Во-первых, для того, чтобы попасть в загрузчик, нам нужен резистор между GND и GPIO 0.1. Во-вторых, необходима программа для непосредственно прошивки. Можно использовать Flash Magic (Win, OS X), можно использовать консольную утилиту – lpc21isp:
Если у вас есть возможность запустить примеры на разных устройствах, вы заметите, что скорость мигания на них не идентична. Это связанно с тем, что у разных устройств разная частота ядра, соответственно, wait() они выполняют за разное время. В следующей части мы изучим вопросы осцилляции детальнее и сделаем четкий отсчет времени.