Атомный реактор для чего
Ядерный реактор для чайников: замыкание топливного цикла в двухкомпонентной ядерной энергетике
БН-800 на Белоярской АЭС — один из двух в мире действующих реакторов на быстрых нейтронах. Выведен на номинальную мощность в 2015 году
Под катом — рассказ про устройство классических ядерных реакторов на тепловых нейтронах, принцип работы ядерных реакторов на быстрых нейтронах (в мире их всего два, и оба в России) и замыкание ядерного топливного цикла.
Уверена, это будет интересно тем, кому пришелся по вкусу рассказ про международную стройку 500-мегаваттного термоядерного реактора ITER.
Наш рассказчик — Алексей Германович Горюнов, заведующий кафедрой и руководитель отделения ядерно-топливного цикла инженерной школы ядерных технологий из томского Политеха, который прочитал лекцию про двухкомпонентную энергетику в томской Точке кипения.
Сегодняшний рассказ — о новых технологиях мирного атома: замыкании ядерно-топливного цикла и двухкомпонентной ядерной энергетике.
Но начнем с того, как ядерно-топливный цикл функционирует сейчас.
Классический топливный цикл
В больших реакторах, преобладающих в ядерной энергетике, таких как водо-водяной ВВР-1000 или канальный РБМК-1000, отработанное топливо не перерабатывают. Его хранят в бассейнах выдержки реакторов, а потом перевозят на площадку долговременного хранения на базе горно-химического комбината.
Базовый процесс получения топлива дорогой, а сырье — исчерпаемый ресурс, поэтому человечество напряженно решает задачу по замыканию топливного цикла — это когда из ядерных отходов опять производят топливо. Сейчас эта схема существует лишь в небольшом сегменте ядерной энергетики — в транспортных и исследовательских реакторах.
Давайте теперь посмотрим на устройство современных реакторов.
Ядерные реакторы на тепловых нейтронах
Схематично атомную станцию с ядерным реактором на тепловых нейтронах можно представить так:
Далее мы будем говорить о так называемом ядерном острове, куда входит реакторная часть. Рассмотрим, какие реакторы используются в настоящее время, а какие могут быть запущены в ближайшем будущем.
Условная схема ядерной электростанции
Реактор — это устройство, в активной зоне которого осуществляется контролируемая самоподдерживающаяся цепная реакция деления ядер тяжелых элементов, в частности урана-235. Сегодня наиболее распространены водо-водяные энергетические блоки. На картинке — схема как раз такого реактора.
Условная схема электростанции с водо-водяным реактором
Реактор находится в защищенном корпусе и примыкает к отдельному зданию, где размещают традиционные энергетические узлы — турбинный зал и другие, которые есть в обычных теплоэнергетических станциях.
Обычно в реакторах используют четыре нити охлаждения для повышения надежности. Первый контур охлаждения реактора включает сам реактор, а также главные циркуляционные насосы. Их число соответствует количеству нитей охлаждения — четыре. На каждой из нитей охлаждения установлен парогенератор, который отделяет первый контур реактора от второго, содержащего теплоноситель, поступающий в традиционный остров.
Энергетическая установка с реактором ВВР
Общий вид самого реактора:
Стоит отметить, что это корпусной реактор, такая конструкция позволяет достичь высоких показателей по безопасности.
Ядерные реакторы на быстрых нейтронах
Сначала немного физики. Напомню, изотопы — это элементы, имеющие одинаковые атомные номера, но разный атомный вес. Самое интересное, что они имеют разные свойства. К примеру, уран-238 практически не делится в реакторах на тепловых нейтронах, а уран-235 — делится. Чтобы описать вероятность деления изотопа, в ядерной физике используют понятие «сечение деления».
Сечение реакции деления ядер изотопов урана, плутония и тория в зависимости от энергии нейтронов
Рисунок наглядно показывает, что для урана-235 и плутония-239 мы можем создать цепную реакцию, используя как тепловые, так и быстрые нейтроны. А уран-238 в левой части графика (где находятся тепловые нейтроны) делиться не будет. В природе же распространен в основном изотоп урана-238, который нельзя напрямую использовать в реакторе на тепловых нейтронах. Урана-235 в природе содержится очень мало, а для получения топлива необходимо проводить дорогостоящее обогащение.
Реактор на быстрых нейтронах позволяет уйти от процедуры обогащения по урану-235. Но технически все не так просто.
В реакторе на тепловых нейтронах, как и в целом во всех современных энергетических установках, в качестве теплоносителя используют воду. Именно она переносит тепловую энергию к турбинам. С ней понятно, как работать, какие использовать конструкционные материалы. Однако из ядерной физики мы знаем, что вода замедляет быстрые нейтроны, появляющиеся при делении ядер.
Поэтому в реакторе на быстрых нейтронах в качестве теплоносителя, как правило, используются жидкие металлы, что существенно усложняет конструкцию.
Здесь приходится решать целый пласт научных и опытно-конструкторских задач, в том числе — разрабатывать новые материалы.
Наиболее вероятная реакция в реакторе на быстрых нейтронах — поглощение нейтрона изотопом урана-238 — показана на схеме ниже.
Уран-235 и плутоний-239 схожи по своим свойствам. На базе этих ядер мы вполне можем получить цепную реакцию: поглощая как быстрые, так и медленные нейтроны, ядра будут делиться, испуская вторичные, третичные нейтроны и т.д.
Исторически сложилось, что наиболее проработанные на сегодняшний день реакторы на быстрых нейтронах — БН-600 и БН-800.
А Россия — единственная страна в мире, имеющая действующие промышленные ядерные реакторы на быстрых нейтронах.
Их устройство намного сложнее, чем у двухконтурного водо-водяного реактора на тепловых нейтронах, поскольку в качестве теплоносителя используют жидкий натрий с температурой плавления
Схема энергоблока с реактором на быстрых нейтронах
В реакторах с натриевым теплоносителем мы не можем использовать двухконтурную схему, где первый контур заполнен натрием, а второй — водой, поскольку случайное взаимодействие облученного натрия с водой приведет к особо тяжелым последствиям. В ходе реакции этих двух веществ выделяется взрывоопасный водород, и в случае взрыва нейтрализовать фонящий натрий будет крайне проблематично. Поэтому используют трехконтурную схему. Первый контур — натриевый (на рисунке он показан красным в центре реактора), потом теплообменник и еще один (промежуточный) натриевый контур (желтый цвет), позволяющий снизить степень облучения натрия, и только в третьем контуре используется вода, установлена турбина, тепловые части и остальное оборудование. Три контура усложняют как эксплуатацию реактора, так и управление им.
Следующий шаг — БРЕСТ
Энергокомплекс БРЕСТ-300 — следующий этап развития. Создается он в рамках росатомовского проекта «Прорыв». Вместо натрия в качестве теплоносителя используют свинец (tплав. 327℃). Это позволяет, как и в водо-водяных реакторах, использовать всего два контура, упрощает управление и повышает энергоэффективность.
Конструкция этого реактора обеспечивает так называемую естественную безопасность: на этом реакторе невозможна авария из-за неконтролируемого появления нейтронов, приводящего к цепным реакциям (разгона реактора по мощности).
На этот реактор возлагают большие надежды. В нем можно «сжигать» делящиеся элементы и нарабатывать плутоний, а потом использовать его для замыкания ядерно-топливного цикла.
Цель замыкания — постепенно исключить часть цепочки, связанную с добычей урана его обогащением, а также повторно использовать ядерные отходы.
Двухкомпонентная энергетика — это решение задачи по уменьшению количества обогащенного природного урана, необходимого для работы всех этих реакторов. Она еще не достигла пика своего развития — это то, чем будет заниматься поколение сегодняшних школьников.
В настоящее время в реакторах на быстрых нейтронах мы начинаем нарабатывать делящиеся элементы, которые впоследствии позволят загружать сюда топливо, не обогащенное по урану-235.
БН-600 и БН-800 уже работают на так называемом МОКС-топливе (MOX — Mixed-Oxide fuel) — смеси, включающей оксиды плутония-239 и урана. Причем реакторы могут работать как на топливе, обогащенном по урану-235 — и в этом случае нарабатывать плутоний-239, — так и на плутонии.
Частично замкнутый цикл использования ядерного топлива
На базе Опытно-демонстрационного центра в Северске, а в будущем и завода ФТ-2 в Железногорске, есть хранилище отработанного ядерного топлива. Сейчас на финальной стадии разработки находится технология, которая позволит переработать топливо после реактора ВВР и вернуть из него в цикл уран и плутоний. Задачу переработки решают весьма интересно: уран и плутоний не разделяют, а передают на производство в смешанном виде. В итоге мы получаем тепловыделяющие сборки для реакторов, содержащие регенерированный уран и плутоний, а также добавленный туда природный уран, обогащенный по изотопу-235.
Конечно, полного замыкания ядерно-топливного цикла здесь нет, но этот подход позволяет снизить затраты на обогащение.
Кроме того, делящиеся элементы, которые мы будем извлекать из отработанного в реакторах ВВР топлива, пойдут на топливные циклы быстрых реакторов.
Сейчас уже отработана схема загрузки в реактор БН-800 МОКС-топлива, содержащего плутоний-239 и уран-238, его путь на рисунке ниже показан красной линией.
Схема подразумевает использование отработанного ядерного топлива (ОЯТ) из реактора ВВЭР совместно с оксидным топливом с ураном-235 после реакторов БН. В ходе переработки мы выделяем смесь плутония и урана, которая идет на изготовление МОКС-топлива. А отработанное МОКС-топливо перерабатывают вместе с топливом после реактора РБМК.
Получается, что мы начинаем с обычной загрузки реакторов оксидным топливом на базе урана-235 и постепенно, нарабатывая плутоний-239 в быстром реакторе, вытесняем его МОКС-топливом.
Мы не сможем сразу перейти с традиционных реакторов на быстрые, потому что для каждого реактора на быстрых нейтронах придется построить инфраструктуру по переработке топлива, которая в первое время не будет загружена, ведь реакторы должны наработать топливо, которое впоследствии будет перерабатываться. А в схеме выше заложен плавный переход от существующих реакторов к быстрым. Эта схема подразумевает наработку плутония на реакторе БН-800. В перспективе должны появиться более мощные и более рентабельные установки — БН-1200, которые воплотят двухкомпонентность нашей ядерной энергетики на ближайшее десятилетие и стратегию того же Росатома.
Но интереснее то, что происходит в проекте БРЕСТ. Реактор такого типа с электрической мощностью 300 МВт уже начали возводить в Северске. Вокруг него построят комплекс, который позволит решать задачи регенерации топлива, т.е. все процессы в рамках замыкания топливного цикла будут сосредоточены в одном месте.
На начальном этапе будет нужна подпитка природным или обедненным ураном, как отмечено на картинке. Не имея нужного объема плутония, мы можем, как и в предыдущей схеме, стартовать, используя комбинированное топливо, и постепенно нарабатывать плутоний, переходя на замкнутый цикл.
На этот реактор возлагают большие надежды: упомянутый выше естественный контур защиты не позволяет разогнать его до тяжелых аварий. Но здесь придется столкнуться с рядом проблем. Задачи, связанные с наработкой плутония, уже в какой-то степени решали. А вот переработка ядерного топлива после быстрых реакторов — вопрос открытый. Здесь нужно обеспечить короткую выдержку топлива: оно горячее и с высоким радиационным фоном. Нужно создавать новые технологические процессы, отрабатывать их на стендах и внедрять.
Если задача по замыканию ядерного топливного цикла будет решена, то в масштабах жизни человека мы получим практически неисчерпаемый источник энергии.
Параллельно необходимо довести до конца решение задачи по выводу отходов из цикла без нарушения естественного радиационного баланса Земли. Проектируемый топливный цикл должен обеспечить возврат ровно того же количества радиации, которое мы извлекли. Теоретически эта задача просчитана и может быть решена. Дело за практикой.
Ядерный реактор работает слаженно и четко. Иначе, как известно, будет беда. Но что там творится внутри? Попытаемся сформулировать принцип работы ядерного (атомного) реактора кратко, четко, с остановками.
Градирни АЭС
Ядерная реакция – это процесс превращения (деления) атомных ядер при взаимодействии их с элементарными частицами и гамма-квантами.
Ядерные реакции могут проходить как с поглощением, так и с выделением энергии. В реакторе используются вторые реакции.
Ядерный реактор – это устройство, назначением которого является поддержание контролируемой ядерной реакции с выделением энергии.
Реактор
История создания атомного реактора
В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский – всего 1 Ватт. Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.
Принцип работы ядерного (атомного) реактора
Приведем ниже схему работы ядерного реактора.
Схема ядерного реактора на АЭС
Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.
Цепная реакция
Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.
ТВЭЛы, помещенные в топливную кассету
Ядерное топливо
Критическая масса – это необходимая для начала цепной ядерной реакции масса делящегося вещества.
При помощи ТВЭЛов и управляющих стержней в ректоре сначала создается критическая масса ядерного топлива, а потом реактор в несколько этапов выводится на оптимальный уровень мощности.
В данной статье мы постарались дать Вам общее представление об устройстве и принципе работы ядерного (атомного) реактора. Если у Вас остались вопросы по теме или в университете задали задачу по ядерной физике – обращайтесь к специалистам нашей компании. Мы, как обычно, готовы помочь Вам решить любой насущный вопрос по учебе. А пока мы этим занимаемся, Вашему вниманию очередное образовательное видео!
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Ядерный реактор
Принцип работы ядерного реактора
Принцип действия реактора можно описать в паре предложений:
Уран-235 распадается, вследствие чего выделяется большое количество тепловой энергии. Эта энергия кипятит воду, а возникший пар крутит турбину под давлением. Турбина, в свою очередь, вращает электрогенератор, который вырабатывает электричество.
Все, расходимся… Ладно, давайте разберемся более детально.
Уран-235 — это один из изотопов урана. Изотоп — это разновидность атома какого-либо вещества, которая отличается от обычного атома массой. Конкретно уран-235 отличается от простого урана тем, что в ядре такого изотопа на три нейтрона меньше.
Из-за недостатка нейтронов ядро становится менее стабильным и распадается на две части, если разогнать и врезать в него нейтрон. При этой реакции вылетает еще парочка нейтронов. Эти нейтроны могут попасть в другое ядро урана-235 и расщепить его, после чего оттуда вылетит еще нейтрон, и так далее по цепочке. Такой процесс называется ядерной реакцией.
Деление урана
Деление ядер урана под воздействием нейтронов открыли немецкие ученые Отто Ган и Фриц Штрассман в 1938 году. Для эксперимента выбрали именно нейтроны потому, что они электрически нейтральны, то есть у них нет заряда. А раз нет заряда, то между протонами и нейтронами нет кулоновского отталкивания, и нейтроны легко проникают в ядро.
Результаты деления ядра урана-235:
1. Распад на барий и криптон с выделением трех нейтронов:
2. Распад на ксенон и стронций с выделением двух нейтронов:
Хорошая новость заключается в том, что ядерной реакцией можно управлять. Задача проста — следи себе за реакцией, контролируй и не давай урану распадаться слишком быстро. Легко сказать!
Для выполнения этой задачи придумали замедлитель. Замедлитель — не устройство, а вещество, которое уменьшает кинетическую энергию нейтронов за счет многократного столкновения с молекулами замедлителя. В качестве замедлителя часто используют графитовые стержни и воду — обычную (H2O) или тяжелую (D2O).
Техническая реализация
Если вы хоть раз смотрели «Симпсонов» (или в вашем городе есть реактор), то знаете, как выглядят большие трубы, стоящие на территории атомной электростанции (АЭС). Эти трубы называются градирни и служат для быстрого охлаждения пара.
В момент распада ядро урана раскалывается на две части. Эти части разлетаются в разные стороны с огромной скоростью, но, несмотря на скорость, не улетают далеко. Они ударяются об атомы, которые находятся рядом, и кинетическая энергия переходит в тепловую. Количество теплоты от этих соударений нагревает воду, превращая ее в пар. Пар крутит турбину, а турбина крутит генератор, который вырабатывает электричество — точно так же, как в угольной тепловой электростанции.
Вот и получается, что мы живем в стимпанке — все работает на пару.
Если коротко, то атомная электростанция — это установка, которая производит электричество за счет ядерного реактора.
Кстати, когда будете играть в крокодила, загадайте атомную электростанцию. Будет забавно, проверено.
Чернобыльская АЭС
Но по большому счету, реактор — это очень дорогой чайник. Дым, который валит из труб АЭС и пугает прохожих, на самом деле не дым, а пар.
В результате работы ядерного реактора действительно образуются радиоактивные отходы, и они могут быть опасны, если с ними неправильно обращаться. Часть этих отходов перерабатывают для дальнейшего использования, а часть приходится держать в хранилищах, чтобы они не причинили вред человеку и окружающей среде.
Атомные электростанции выбрасывают в атмосферу только пар, им необходимо небольшое количество топлива, а еще они занимают малую площадь и при правильном использовании безопасны. Тем не менее, после аварии на Чернобыльской АЭС многие страны приостановили развитие атомной энергетики.
Первая авария на Чернобыльской АЭС произошла в 1982 году. Во время пробного пуска разрушился один из технологических каналов реактора, была деформирована графитовая кладка активной зоны. Пострадавших не было, но последствия ликвидировали около трех месяцев.
В 1986 году произошло ЧП в известном всему миру четвертом энергоблоке. В этом самом энергоблоке проводились испытания турбогенератора. Система аварийного охлаждения была планово отключена, поэтому, когда реактор не смогли остановить, эта система не спасла АЭС от взрыва и пожара.
Виды современных реакторов
Сегодня существует несколько видов ядерных реакторов, но используют в основном два — гомогенные и гетерогенные:
Еще бывают реакторы, в которых для получения энергии используют уран-238, а не уран-235. Но в таких реакторах сложно отводить тепло, поэтому они довольно редки.
Использование атомной энергии
Атомная энергия используется не только в ядерных реакторах. Например, существуют корабли и подводные лодки, которые работают на атомной энергии.
В начале XXI века из-за высоких цен на нефть были очень актуальны поиски способов использования ядерной энергии. Тогда появились разработки по компактным атомным электростанциям, которые могут работать десятилетиями без обслуживания и к тому же безопасны.
Кроме того, ученые работают над ядерными методами для диагностики и лечения онкологических заболеваний — радиоактивные изотопы могут уничтожать раковые клетки.
Ядерный реактор
Как забрать энергию у ядерного топлива и превратить в тепло
Визитная карточка советской ядерной энергетики — РБМК (реактор большой мощности канальный). Это канальный реактор с графитовым замедлителем и легкой водой в качестве теплоносителя, который работает на топливе из двуокиси урана. Мощность реактора РБМК-1000 составляет 1 ГВт, РБМК-1500 — 1,5 ГВт. Существовали проекты реакторов этого типа большей мощности, однако они не были реализованы.
РБМК был создан по подобию промышленных реакторов, нарабатывавших плутоний. Активная зона РБМК набрана из графитовых блоков размером 25 на 25 сантиметров. В каждом из блоков проделан канал, в котором размещается тепловыделяющий блок с твэлами. Каждый тепловыделяющий блок индивидуально охлаждается водой, которая нагревается до кипения и частично испаряется. Циркуляция теплоносителя осуществляется в контуре многократной принудительной циркуляции (КМПЦ). Пароводяная смесь отводится через верхние части каналов и пароводяную коммуникацию, подается в сепараторы, которые разделяют сухой пар 15 и воду. Вода возвращается обратно в активную зону реактора, а пар подается на турбину электрогенератора, где превращается в конденсат, и возвращается обратно в КМПЦ. Так как в РБМК вода закипает, в нем не требуется поддерживать высокое давление: в его каналах давление всего 70 атмосфер.
Недостаток РБМК, заложенный в самой его конструкции, — дисбаланс между количеством графита (замедлителя) и воды (поглотителя нейтронов). Изначально графитовые блоки планировали сделать размером 20 на 20 сантиметров, но не хватало места, чтобы подвести в такой жесткой конструкции разводку для каждого блока. Тогда было решено сделать их чуть больше. В результате графита оказалось больше, а воды — меньше, что повысило вероятность возникновения аварийных ситуаций с вводом положительной реактивности при опустошении первого контура и ухода воды из каналов.
В процессе эксплуатации графитовая кладка постепенно деформируется и распухает под действием радиации. Один из возможных способов сделать РБМК более безопасными — модернизировать кладку, сделав ее не из цельных блоков, а, например, из маленьких шариков и убрав из нее избыток графита. 16
Сегодня РБМК постепенно выводят из эксплуатации. До 2030 года в России планируется остановить 18 энергоблоков, в основном с реакторами РБМК. 17
В современной ядерной энергетике важную роль играют корпусные водо-водяные реакторы. В России это ВВЭР (водо-водяные энергетические реакторы), в других странах похожие реакторы называют PWR. На них приходится 60% мощностей всех реакторов мира. ВВЭР были созданы во многом благодаря реакторным установкам для атомных подводных лодок, на которых в качестве теплоносителя и замедлителя тоже используется вода.
Реакторы ВВЭР работают по двухконтурной схеме. Через реактор циркулирует обычная вода, очищенная от примесей. Проходя через активную зону и омывая твэлы, она нагревается до 320 °C, и, чтобы она оставалась в жидком состоянии, ее приходится держать под давлением 160 атмосфер. Нагретая вода попадает в парогенератор, где отдает тепло воде второго контура, и затем снова закачивается в реактор. Вода второго контура превращается в парогенераторе в пар, который вращает турбину электрогенератора.
Кроме поглощающих стержней для контроля реактивности в реакторах ВВЭР используется борное регулирование. Борная кислота, которая выступает в качестве жидкого поглотителя нейтронов, подается в циркулирующую через активную зону воду первого контура. Ее концентрация изменяется в ходе работы реактора в зависимости от требований к реактивности. В начале работы у реактора большой запас реактивности, и, чтобы его компенсировать, требуется большая концентрация борной кислоты, а по мере выгорания топлива размножающие способности реактора ухудшаются, и борную кислоту постепенно выводят из раствора.