Аустенитного класса что это
Аустенитная сталь
Аустенитная сталь – одна из модификаций железа с высокой степенью легирования. Обладает гранецентрированной кристаллической решеткой. Она легко сохраняет свою структуру даже при очень низких температурах. Аустениты располагают высокими показателями прочности. Он устойчивы как высоким температурам и большим нагрузкам.
Свойства аустенитных сталей
Сталь аустенитного класса образует 1-фазную структуру во время процесса кристаллизации. Ее кристаллическая решетка не изменяется даже при резком охлаждении до отрицательных температур (–200 °C). Основными компонентами аустенитных железных сплавов являются хром и никель. От доли их содержания зависят технологичность, пластичность, прочность и жаростойкость материала. Для легирования применяют следующие материалы:
По свойствам материалов аустенитные модификации железа делятся на следующие типы:
Аустенитная высоколегированная сталь является одной из самых дорогих модификаций железа, потому что в них содержится большое количество дорогостоящих материалов: хрома и никеля. Также на ее стоимость влияет количество дополнительных легирующих компонентов, позволяющих создавать железные сплавы с особыми свойствами. Дополнительные элементы легирования подбираются в зависимости от сложности работ, где применяются аустенит.
В аустенитных сталях могут осуществляться следующие разновидности превращений:
Время, требуемое для превращения аустенитной стали в иные модификации железа, определяется содержанием углерода в твердом растворе и количеством дополнительных легирующих компонентов. Чем ниже эти показатели, тем быстрее охлаждается металлическое изделие.
Методы получения аустенита
Стали аустенитного класса образуются в процессе появления и роста зерен исходной микроструктуры металлического изделия. Формирование аустенита осуществляется на поверхности раздела фаз феррита и карбида. Карбидные частицы постепенно растворяются в твердом растворе аустенита.
Получить аустенит также можно из эвтектоидной модификации железа, состоящей из феррита и цементита. Для этого исходную металлическую заготовку необходимо нагреть до температуры 900 °C. Важно, чтобы в сплаве присутствовала минимальная концентрация углерода, равняющаяся 0,66%. Во время этого процесса феррит превращается в аустенит, а цементит полностью растворяется. В итоге сформируется нержавеющая аустенитная сталь.
При производстве металлических заготовок из аустенитных сталей, стабилизированных титаном, необходимо в вакуумно-индукционной печи переплавить металл. Полученный расплав выдерживают в течение длительного периода для его деазотирования. Количество времени, требуемого для этого процесса, зависит от массы исходного изделия. После выдержки в расплавленный аустенит вводится смесь из титана и нитридообразующих химических элементов.
Для получения устойчивой аустенитной структуры в состав исходной модификации железа добавляются хром и никель. При этом важно соблюдать пропорции. Процентное содержание никеля должно составлять не менее 20%, хрома – не более 19%. Эти химические вещества повышают устойчивость аустенита к высоким температурам и большим нагрузкам. Также они увеличивают выделение карбидов. Материал становится коррозионностойким.
При добавлении хрома и никеля в состав железной модификации нужно выдерживать материал в течение более длительного времени. Очень часто в полученный раствор добавляется смесь из молибдена или фосфора. Эти химические вещества увеличивает вязкость и усталостную прочность железного сплава. Для снижения износа полученного аустенита используют дополнительные легирующие материалы и энергоемкие карбиды.
Применение сплавов
Стали аустенитного класса используются при изготовлении устройств, работающих при высоких температурах, начиная от 200 °C: парогенераторов, роторов, турбин и сварочных механизмов. Недостатком использования аустенита в этих механизмах является низкая прочность металла. При длительном контакте железных сплавов различными гидроокисями могут образоваться дополнительные трещины, что приведет к поломке рабочих поверхностей устройств. Устранить этот недостаток можно при добавлении в раствор железа дополнительных химических элементов: ванадия и ниобия. Они формируют карбидную фазу, увеличивающих показатели прочности стали.
Нержавеющие аустенитные стали используются в механизмах, функционирующих в сложных условиях и при сильных перепадах температурных показателей. Чаще всего они используются при сварке коррозионностойких труб. Во время этого процесса между крепежными элементами образуется шовное пространство. При нагревании нержавеющих труб из аустенита до температуры плавления они приобретают монолитную структуру, защищающей металл от процессов окисления и высоких перепадов температур.
Также аустенитные стали обладают высокой устойчивостью к электромагнитным излучениям. Поэтому ее применяют при производстве отдельных деталей для радиоэлектронного оборудования. Аустенит улучшает прочность механизмов радио и не теряет свои свойства при изменениях структуры магнитного поля. По этой причине радиотехническая аппаратура будет легко принимать необходимые сигналы.
Аустенитные сплавы железа нашли широкое применение в производстве механизмов, работающих в водной среде. Нержавеющая сталь устойчива к образованию коррозии. Она используется в качестве защитного материала. При правильном соотношении хрома и никеля аустенит может сформировать тонкий слой, снижающим влияния водной среды на рабочую поверхность металлического приспособления. В результате снижается износ устройства. Но при значительном вымывании никеля материал полностью теряет устойчивость к коррозии.
В современных корпусах турбин также используются аустенитные стали с большим пределом текучести. Они позволяют избежать коробления данного устройства и улучшить показатели его прочности. Благодаря наличию крупнозернистой структуры, при помощи аустенита с высоким пределом текучести также можно укрепить конструкцию ротора турбины. Недостатком этой технологии является значительное повышение стоимости механизмов из-за использования большого количества дорогой аустенитной стали.
Марки аустенитной стали
Регламент изготовления аустенита определен в ГОСТ 5632-2014. В нем указываются следующие марки сталей аустенитного класса:
Аустенитная сталь: что это такое, марки, класс, свойства, применение
При изготовлении металла на предприятии используется классификация заготовок по структурным особенностям. Обычно металлурги наблюдают за изменениями структуры в ходе металлообработки в том числе после термообработки. И одним из таких состояний является аустенит, а уже после закалки с последующим охлаждением можно получить перлит, мартенсит и прочие изменения. В статье расскажем про то, какие нержавеющие стали относятся к аустенитному классу, какие свойства имеют эти материалы.
Данное образование может быть получено в стальной заготовке, то есть в растворе железа с добавлением углерода. Особенность данного состояния заключается в том, как располагаются атомы этих веществ. Они последовательно образуют рисунок в одном из двух вариантов:
ОЦК А-Fe. Это объемно-центрированное строение, согласно которому атомы располагаются так: они находятся на каждой вершине куба (всего их 8), а также один находится в самом центре). Такой вариант получается не часто, в среднем в 10% случаев.
ГЦК У-Fe. Объемность строения сохраняется, но к предыдущем вершинным точкам добавляется еще такое же количество – они размещаются по центру каждой грани. А в сердцевине атома нет. Таким образом, всего их 16. Это наиболее часто появляющаяся структура – гранецентрированная. Она очень крепкая по отношению к низким и высоким температурам, а также к нагрузкам.
Если сказать, что это такое значит «сталь аустенитного класса » по простому, то это особенная структура нержавеющего металла, которая предопределяет технические характеристики сплава. При изменении его состояния (нагреве, охлаждении и т.д.) меняются и свойства. Именно благодаря прохождению через аустенит с последующим охлаждением возможна такая популярная термообработка, как закалка (нагрев выше критической точки – до изменения кристаллической решетки). Данная процедура пользуется популярностью, потому что это отличный недорогой и достаточно технологически простой способ повышения прочности металла.
Данная модификация металла отличается высокой степенью легирования (наиболее частотная легирующая добавка – хром). Ее особенность – наличие гранецентрированной решетки, а также то, что она сохраняется даже при экстремальном холоде. Из основных характеристик аустенитов – прочность, устойчивость к деформациям даже при нагреве. Все это позволяет использовать изделия из материала в самых опасных, агрессивных средах, очень активно они применяются в машиностроении, а также в химической и нефтяной промышленности.
Механические свойства аустенитных сталей
В процессе легирования используют добавки:
Ферритизаторы. Они стабилизируют структуру аустенита, а также после охлаждения увеличивают долю феррита. Также они предопределяют образование ОЦК-решетки. К ним относятся следующие элементы: ванадий, вольфрам, титан, кремний, ниобий, молибден.
Аустенизаторы. Они расширяют область аустенита. Интересно, что есть даже термин аустенизация – это специальный нагрев, как во время закалки, с последующим кратковременным выдерживанием и охлаждением.
Не все марки класса аустенитных нержавеющих сталей обладают одинаковыми свойствами. Ведь кроме метода термообработки, важен еще и состав. Поэтому как и во всех других случаях при рассмотрении структурных разновидностей сплавов, следует учитывать входящие компоненты и пропорции. Мы отметим, какие свойства характерны некоторым из аустенитов:
Нержавеющие, устойчивые к коррозии. Производство этих популярных сталей регламентируется нормативным документом ГОСТ 5632-2014. Согласно ему, в таких составах находится 18% хрома, 30% никеля и 0,25% углерода. А еще могут быть различные примеси (как полезные, так и вредные), например, кремний, марганец и молибден. Коррозионная невосприимчивость настолько ценится, что применяется повсеместно – от изготовления изделий бытового назначения до сложных узлов в машиностроении. Вещества вступают в реакцию с кислородом и образуют на поверхности оксидную пленку. Именно она является защитной и не нарушается даже при сильных температурных перепадах. Невосприимчивость к нагреву объясняется достаточно низкой углеродистостью.
Аустенитные жаропрочные стали. У них очень высокая предельная точка нагрева, поэтому их можно использовать в сложных подвижных узлах, а также при непосредственном контакте с паром, огнем и иными раскаленными предметами. Температура вплоть до 1100 градусов им абсолютно не страшна, она не сделает существенных изменений в глубинной структуре материала. Это объясняется тем, что сплав обладает ГЦК-решеткой и такими добавками как бор, ниобий, молибден, ванадий и вольфрам. Перечисленные примеси и увеличивают устойчивость к жару. Приведем пример использования – турбины самолетов, все элементы двигателя внутреннего сгорания автомобиля и пр.
Хладостойкие. Чтобы добиться такого эффекта, следует изготовить высоколегированную сталь аустенитного класса с высокой концентрацией никеля (25%) и хрома (19%). Интересной особенностью данных изделий является то, что высокая прочность, пластичность поддерживаются только на морозе, в то время как при комнатной температуре характеристики могут поменяться в негативную сторону.
Отметим, что состав аустенитной стали является дорогостоящим, поскольку в него добавлено большое количество легирующих компонентов. Поэтому далеко не все производственные сферы могут похвастаться наличием деталей из аустенита. Основными примесями являются хром и никель, а они дорого стоят.
Данному классу сплавов характерны различные контролируемые структурные превращения, так можно получить:
Феррит, если нагреть состав до сверхвысоких температур.
Межкристаллическая коррозия. Этого стараются не допускать, поскольку данный процесс приводит ко внутренним разрушениям структуры, глубоких слоев и поверхности. Дело в том, что когда железо нагревается более 900 градусов, то появляются избыточные фазы карбидов, которые, в свою очередь, уже влияют на коррозийные преобразования.
Перлит. Это часто используемая структура металла, которая представлена в виде небольших зерен и пластин. Его образование неизбежно при медленном, постепенном охлаждении заготовки непосредственно вместе с печью до температуры в 730 градусов. Именно на этом рубеже происходят изменения в кристаллической решетке из-за эвтектоидного распада. Также его называют перлитным превращением. В ходе данного процесса одновременно растет феррит и цементит, имеющие пластинчатую форму.
Мартенсит. Это еще один тип структуры, представленный пластинами в виде иголок или тонких реек. Он образуется, когда резко снижают температуру изделия, например, сразу из печи и в холодную воду или в масло.
Таким образом, любые превращения являются предусмотренными заранее и контролируемыми. Обычно решающим фактором процедуры является время выдержки и температура нагрева и охлаждения. Это определяется содержанием углерода и прочих легирующих добавок. Те сплавы, которые имеют наименьшее количество примесей, кристаллизуются быстрее.
Методы получения аустенитных углеродистых сталей
Весь первоначальный процесс можно описать так: чтобы получить аустенит, необходимо чтобы в первоначальной структуре сплавов начали появляться и расти зерна. Сперва зернистость меняется у поверхности при фазах появления карбидов, со временем полностью толща заготовки меняет свою структуру.
Второй способ изготовления аустенита – это нагрев до 900 градусов перлитной модификации железа (после эвтектоидного распада). Такой сплав состоит частично из цементита, на вторую часть из феррита. Чтобы такое превращение произошло, необходима минимальная углеродистость стали – не меньше, чем 0,66% содержание вещества. После того как повышается температура более чем на 900 градусов, ферритная структура перевоплощается в аустенитную, а цементитная полностью растворяется. Получается прекрасного качества аустенитная нержавейка.
Есть еще один вариант – с титановой смесью. В таких случаях берется металлическая заготовка, она помещается в индукционную печь, в которой поддерживается вакуум. В ней сперва достигается высокий жар, а затем он долгий период поддерживается. За это время происходит диазотирование, то есть удаление из стального расплава атомов азота. Временной промежуток определяется индивидуально в зависимости от массы заготовки. Затем постепенно добавляются титан и другие металлические и неметаллические примеси, которые образуют нитриды в реакции с железом.
Но основной способ получения аустенитной стали базируется на создании высоколегированного хромоникелевого сплава. Легировать изделие можно с помощью добавления хрома и никеля. После того как вещества добавлены в тугой раствор, нужно продолжительное время поддерживать высокую температуру, это дает:
устойчивость к коррозии;
увеличенное выделение карбидов.
А если добавить молибден и фосфор, то можно добиться повышенной вязкости и усталостной прочности.
Химические элементы и их влияние на аустенит
Как и любая легированная сталь, в своей основе данная может иметь ряд легирующих добавок. Давайте посмотрим, как их содержание в расплаве влияет на основные качества металла:
Хром. Его высокая концентрация, превышающая 13% (но не более 19%), способствует созданию оксидной пленки. Она, как известно, препятствует возникновению коррозии. Интересно, что такое действие хрома актуально исключительно при невысоком содержании углерода. Поскольку в обратном случае эти два элемента начинают вступать в реакцию, образуя карбид, который, напротив, ускоряет процесс ржавления.
Никель. Еще один постоянно использующийся материал. Его может быть очень много, даже более 50%. Но для того чтобы получить из железа аустенит, достаточно всего 9-12 процентов. Химическое вещество очень положительно воздействует на пластичность – она становится выше. Кроме того, зернистость становится меньше, что хорошо сказывается на прочности.
Углерод. Добавляют обычно сотые, десятые доли. Этого достаточно для того, чтобы повысить прочность. Это обусловлено тем, что вещество приводит к образованию карбидов.
Азот. Он заменяет углерод, если тот нельзя добавлять в сплав по каким-либо причинам, например, если изделие должно обладать стойкостью к электрическому и химическому воздействию.
Бор. Очень хорошо увеличивает пластичность, даже если вещество находится в очень небольшом количестве, а зерно становится меньше.
Кремний и марганец. Добавляют для стабилизации аустенита, а также для повышения прочности.
Титан и ниобий. Применяют при изготовлении хладостойких сплавов.
Применение аустенитных сталей
Наиболее частое использование:
Любые элементы, которые используются при высоких температурах – более 200 градусов (вплоть до 1100). Это могут быть самолетные турбины или различные детали в двигателе. Однако следует внимательно следить за тем, какие химические реакции будут происходить при контакте с топливом, паром и другими агрессивными средами. Иногда возникают трещины. Чтобы предотвратить такую возможность, следует добавить такие примеси как ванадий и ниобий. С ними будет сформирована карбидная фаза, за счет чего происходит упрочнение поверхности.
Различные механизмы, которые подвергаются быстрым температурным перепадам. Например, при сварке некоторых материалов.
Электрическое оборудование, контакты. Их можно сделать благодаря тому, что аустенит устойчив к электромагнитным волнам.
Детали для устройств, работающих в водной среде или в условиях повышенной влажности. Это возможно из-за коррозионностойкой стали аустенитного класса. Никель и хром, которые способствуют этой характеристики, также продлевают износ элемента.
Марки аустенитной стали
Все классы можно поделить на три категории:
Коррозионностойкие: 08Х18Н10, 12Х18Н10Т, 06Х18Н11 (они содержат хром и никель), 10Х14Г14Н4Т, 07Х21Г7АН5 (с добавкой марганца), 08Х17Н13М2Т, 03Х16Н16ЬЗ (особенность – наличие молибдена), 02Х8Н22С6, 15Х18Н12С4Т10 (в них много кремния).
Жаропрочные, например, 08Х16Н9М2, 10Х14Н16Б, 10Х18Н12Т, 10Х14Н14В2БР. Особенностью является наличие в них бора, вольфрама, ниобия, ванадия или молибдена.
Хладостойкие: 03Х20Н16АГ6 и 07Х13Н4АГ20, в них очень много хрома и никеля.
Обратите внимание на маркировку, она обусловлена нормативным документом, ниже о нем.
ГОСТ 5632-2014
Данный документ диктует требования к каждой конкретной марке. В представленных там таблицах перечисляются качества и показатели, которые отвечают за итоговый результат – прочность, износостойкость и пр. Посмотрим на маркировку и отметим, что она сочетает в себе цифры и буквы. Литеры обозначают ту легирующую добавку, которая находится в наибольшем количестве (мельчайшие примеси могут не отображаться в названии, но будут перечислены в техническом паспорте сплава). В самом начале стоит только цифра – это сотые доли углерода. Затем буква добавки с последующим уточнением – сколько процентов. Посмотрим на простом примере. 06Х18Н11, в этой марке:
Особенности термообработки
Несмотря на то что данный материал обладает повышенными прочностными характеристиками, он очень плохо подвергается металлообработке. Обычно, чтобы улучшить качества заготовки используется один из методов:
Отжиг. Данный процесс заключается в нагреве до высоких температур (изменения кристаллической решетки) с последующей выдержкой на протяжении нескольких часов. После этого происходит охлаждение одним из способов – в масле, воде, на воздухе при комнатных условиях. Это способствует снижению твердости аустенитных сталей.
Двойная закалка. Повторная процедура нагрева позволяет повысить жаропрочность материала. Дополнительно зачастую используют старение.
Аустенит – очень часто используемый сплав. Чтобы подробнее разобраться в теме, посмотрим видео:
3 вида сталей аустенитного класса и методы их сварки
У стали есть один минус — она обладает магнитными свойствами, которые далеко не всегда являются полезными. Этого недостатка лишена аустенитная сталь. Подобные сплавы практически не обладают магнитными свойствами, они не ржавеют, хорошо выдерживают механическую деформацию. Аустениты используются для производства радиооборудования, турбин, морозостойких конструкций. Какие бывают аустенитные стали? Как выполняется сварка различных деталей на их основе?
Общие сведения
Аустенитная сталь — особая разновидность нержавеющей стали. Стали аустенитного класса содержат железо, а также различные легирующие компоненты — никель, марганец, азот, алюминий, хром, молибден.
Железо и легирующие элементы в стали образуют кубическую кристаллическую решетку. Подобную структуру называют аустенитом. Кристаллическая решетка обусловливает ряд характерных физических свойств аустенита — сохранение твердости при тепловой обработке, почти полное отсутствие магнитных свойств материала, высокая химическая инертность.
Для удобства аустенитные стали делят на два условных класса. В первую категорию попадают материалы с большим содержанием никеля. Во вторую категорию включаются материалы с большим содержанием марганца и азота, а также с незначительным содержанием никеля.
Вторые материалы обладают более высокой прочностью, однако стоят они на порядок дороже. К тому же аустенит на основе никеля лучше переносит воздействие агрессивных химических сред (кислоты, щелочи, сильные соли, радиоактивные вещества).
Из стали-аустенита делают различную технику, вещи, оборудование. Это могут быть приборы учета, столовые приборы, металлические балки, турбины, конструкционные элементы, автомобильные детали, специальную технику для нужд химической промышленности и так далее.
Еще одна крупная сфера применения аустенита — изготовление радиооборудования. Отсутствие магнитных свойств в данном случае идет на пользу — обычные стальные сплавы могут вносить в радиосигнал определенные искажения, тогда как аустенит будет передавать сигнал без задержек, потерь, искажений.
Физические свойства
Виды сталей аустенитного класса
По составу и физическим свойствам различают 3 вида стали-аустенита:
Антикоррозийный аустенитный класс стали
В эту категорию включаются сплавы с большим удельным содержанием хрома, никеля. В незначительных количествах в сплав также могут входить кремний, марганец, молибден. Особенность сплавов этой группы — минимальный риск коррозии при любых температурах.
Высокая устойчивость обеспечивается за счет двух факторов. Первый фактор — это большое содержания хрома, который создает защитную пленку на поверхности стали. Второй фактор — низкое содержание углерода (менее 0,3%). Комбинация этих факторов приводит к тому, что материал не вступает в контакт с кислородом, азотом, водой, различными химическими веществами.
Устойчивость сохраняется даже при нагреве либо охлаждении, поскольку хром при изменении температур сохраняет свои физические свойства.
Жаростойкий класс
В эту категорию включаются сплавы с большим содержанием никеля, бора, ниобия, ванадия, молибдена, вольфрама. Легирующие компоненты делают материал более прочным, минимизируют риск образования пор между отдельными атомами железа. Поэтому жаростойкий аустенит сохраняет свою форму при нагреве до 1100 градусов.
Жаростойкий материал-аустенит подходит для изготовления различных печей, станков, фабричного оборудования. В состав некоторых сплавов также включается большое количество хрома. В результате образуется жаростойкий антикоррозионный сплав, который не только выдерживает нагрев, но и не покрывается коррозией.
Хладостойкий класс
В эту категорию входят сплавы, с большим удельным содержанием хрома и со средним содержанием никеля. В качестве дополнительных легирующих добавок могут использоваться алюминий, марганец, ванадий, вольфрам.
Хладостойкие сплавы выдерживают очень низкие температуры, отлично переносят резкие перепады температур. Однако при нормальной комнатной температуре хладостойкая сталь-аустенит обладает посредственными физическими свойствами — невысокая прочность, слабая химическая инертность.
Поэтому из хладостойких сплавов делают специальную технику, оборудование для регионов с очень холодными климатом. Еще одна сфера применения — изготовление деталей, изделий, оборудования для нужд космической промышленности.
Сварка аустенитной стали
Для соединения изделий из аустенита может применяться сварочная технология. Соединение металлов может осуществляется всеми основными методами сварки (электрошлаковая, дуговая, в среде защитных газов).
Сварка аустенитных сталей имеет множество особенностей и нюансов, о которых сварщику нужно знать заранее. Особенность — серьезное изменение физических свойств металла-аустенита при нагреве. Это налагает ряд требований относительно проведения сварки. Ведь при неправильном нагреве металла серьезно страдает качество сварного шва, что плохо скажется на прочности соединения.
Особенности нагрева аустенита
Однако сварщик должен избегать появления трещин, неровностей, отверстий в области сварного шва. Чтобы решить эту проблему, на детали в области шва наплавляется небольшой металлический слой, который обладает другим химическим составом.
Для слоя-заплатки нужен металл, обладающий повышенной жаропрочностью, высокой коррозийной стойкостью. Заплатка будет выступать в качестве защитного слоя, который будет препятствовать растрескиванию шва. Защитный слой рекомендуется обжечь при температуре +800 градусов, чтобы избежать появления трещин при повышенном уровне нагрузки.
Электрошлаковая сварка
Электрошлаковая технология сварки подходит для соединения как больших, так и мелких изделий на основе аустенита. Главные плюсы этой технологии — минимальный риск образования трещин, отсутствие деформации на стыках, удобство проведения сварочных работ.
Сварку рекомендуется проводить быстро и при небольших температурах. Ведь при длительном нагреве металла выше температуры 1200 градусов могут образовываться локальные трещины, что может привести к разрушению металла.
Дуговая сварка
Дуговая сварка для соединения аустенитной стали имеет множество недостатков.
Фтористокальциевые электроды
Существует ряд приемов, которые позволяют обойти ограничения дуговой сварки. Самый популярный метод — это применение фтористокальциевых электродов малого диаметра (оптимальный диаметр сечения — 3-5 миллиметров).
Подобные стержни обладают низкой пластичностью, поэтому во время сварочных работ электроды не совершают лишних колебаний. Благодаря этому снижается контакт расплавленного металла с воздухом, а также снижается риск образования трещин вследствие повышения хрупкости.
За 1,5-2 часа до проведения сварочных работ рекомендуется выполнить прокалку фтористокальциевых электродов при небольшой температуре (200-300 градусов). Это помогает минимизировать риск возникновения пор в электроде.
Электродуговая сварка должна выполняться строго на обратнополярном постоянном токе. В противном случае стабильность электрода не гарантируется.
Сварка в среде защитных газов
Сварка аустенитных сталей с применением защитных газов — лучший способ соединения аустенитов. Эта методика позволяет соединить детали различных форм, а сварка может проводиться в любых пространственных положениях.
Применение защитных газов минимизирует вероятность образования трещин, налета, ржавчины, окалины, что делает сварное соединение очень прочным. В качестве защитной среды может применяться любой газ — аргон, гелий, азот, углекислый газ и другие. Для сварки обычно применяются плавящиеся либо вольфрамовые стержни, которые подходят для создания небольших прочных швов (оптимальная толщина — 5-10 миллиметров).
Особенности сварки аустенита в среде защитных газов
ГОСТы
Изготовление аустенита регулируется с помощью законодательным норм, правил, законов. Основные нормы перечислены в следующих нормативных документах — ГОСТ 5632-2014, ГОСТ 11878-66, ГОСТ Р ИСО 4136-2009.
Эти документы определяют все основные моменты, которые касаются аустенитных сталей — изготовление, маркировка, категории, марки, особенности транспортировки и так далее.
В соответствии с нормами ГОСТ для определения содержания ферритных (железных) компонентов в каких-либо изделиях на основе аустенита может применяться металлография либо магнитная технология. Для проведения проверки из аустенита вырезаются небольшие прутки (не менее 2 штук).
Алгоритм проверок
Заключение
Подведем итоги. Аустенитная сталь — специальная разновидность стального сплава. Основное отличие подобной стали от других материалов — это наличие особой кристаллической структуры, которую называют аустенитом. С физической точки зрения аустенитные стали обладают следующими свойствами — отсутствие магнитных свойств, высокая прочность, отличная коррозийная устойчивость, химическая инертность.
Из аустенита обычно делают различное оборудование специального назначения — турбины, детали для радиоэлектроники, космическое оборудование, арктические печи и так далее.
Основным компонентом аустенитных сталей является железо и различные легирующие добавки (никель, хром, алюминий, вольфрам, ниобий и другие). В зависимости от состава различают несколько разновидностей аустенита — жаростойкие, морозостойкие, антикоррозийные и другие.
Для соединения деталей на основе аустенитной стали используется сварка. Допускаются все основные виды сварки — дуговая, в среде инертных газов, плазменная и другие. При проведении сварки нужно помнить о температурных режимах аустенита (в противном случае Вы можете получить некачественный сварной шов с трещинами).
Изготовление, маркировку, состав аустенитных сталей регулируют нормы ГОСТ. В соответствии с государственными нормами проверка содержания железа в сплаве может осуществляться двумя методами — металлография либо магнитная технология.