Аутоантитела что это такое простыми словами
Биомаркеры рака – аутоантитела
Как распознать рак при помощи биомаркеров?
Аполлинария Боголюбова, «Биомолекула»
Статья на конкурс «био/мол/текст»
Смертность от злокачественных опухолей – сравнительно молодая проблема, возникшая, когда средняя продолжительность жизни человека существенно увеличилась благодаря многочисленным победам в борьбе с инфекциями. Практически все опухоли можно излечить на ранних стадиях их возникновения, однако обнаружить новообразование, как правило, удается лишь с появлением симптомов, когда помочь пациенту уже нельзя. В данной статье рассказывается об одном из типов биомаркеров, в последнее время активно разрабатывающихся для ранней диагностики рака, – биомаркерах на основе аутоантител.
Антитела могут служить не только эффективной системой защиты организма от незванных гостей-патогенов, но и позволяют выявить наличие опухоли на ранних стадиях ее развития.
Подобно вооруженной до зубов армии, иммунная система защищает организм от проникновения чужаков-патогенов. И, как и полагается действующей армии, в ее состав входят различные специализированные подразделения. Разведчики – дендритные клетки – первыми обнаруживают антиген; пограничники – тканевые макрофаги – следят за порядком в барьерных тканях организма; пехота – в первую очередь, нейтрофилы, а следом за ними и Т-, NK- и NKT-клетки – первая поднимается на борьбу с врагом; наконец, снайперы – В-лимфоциты – «стреляют» антителами в потенциального захватчика, а T- и B-клетки памяти, подобно мудрецам-стратегам, запоминают информацию об инфекции для эффективной и немедленной борьбы с ней при повторной атаке [1]. Для них не существует мирного времени – всегда нужно быть готовым снова вступить в бой без промедленья, например, против «предателей» организма – опухолевых клеток.
Здравствуй, антитело молодое, незнакомое.
Антитела представляют собой растворимые белки-иммуноглобулины, вырабатываемые так называемыми плазматическими клетками, являющимися конечной стадией дифференцировки B-лимфоцитов и одними из ключевых игроков системы адаптивного (приобретенного) иммунитета. Антигенная стимуляция «наивного» (не встречавшегося с антигеном) B-лимфоцита через B-клеточный рецептор (представляющий собой мембранносвязанную форму антитела) активирует последовательность событий, в результате которых плазматическая клетка оказывается в костном мозге и начинает непрерывно продуцировать большие количества антител, специфичных к конкретному антигену. Участие антител в реализации иммунного ответа может осуществляться как путем прямого действия на молекулы и организмы-носители антигенов, так и косвенно, т. е. путем привлечения дополнительных механизмов (активация системы комплемента, привлечение фагоцитов и т. д.; рис. 1).
Рисунок 1. Основные механизмы действия антител. Нейтрализующее действие антител (вариант 1) проиллюстрировано на примере IgM-антител, блокирующих микроорганизм, и IgG-антител, формирующих иммунный комплекс с токсином. Варианты 2 и 3 (опсонизация, усиливающая фагоцитоз, и стимуляция цитотоксической активности NK-клеток) реализуются через взаимодействие иммуноглобулинов с Fcγ-рецепторами клеток. Взаимодействие с антигеном (вариант 4) открывает комплементсвязывающие участки IgG-антител, что приводит к запуску комплемента по классическому пути и лизис или опсонизацию клеток-мишеней [2].
Процесс формирования репертуара B-клеток обязательно включает в себя происходящую в костном мозге «негативную селекцию», в ходе которой из всего множества незрелых B-лимфоцитов удаляются клетки, несущие на своей поверхности B-клеточный рецептор, способный связывать собственные антигены организма (аутоантигены). Этот процесс крайне важен, поскольку он служит залогом того, что мишенями для антител не станут клетки организма-хозяина. Тем не менее, эффективность негативной селекции не является стопроцентной, и в реальности остается большое количество «аутореактивных» (т.е., способных распознавать аутоантигены) B-клеток.
В норме данный феномен не оказывает негативного воздействия на организм, поскольку на пути к активации аутореактивной B-клетки лежит целый спектр дополнительных регуляторных барьеров. Тем не менее, иногда аутореактивным клеткам удается преодолеть все препятствия, и это может привести к инициированию аутоиммунного процесса, лежащего в основе всех аутоиммунных заболеваний. Этот же сценарий может развиваться и в случае образования опухоли.
Опухолевые клетки, как правило, характеризуются целым спектром нарушений белковых молекул, которые могут быть обнаружены системой адаптивного иммунитета и проявляться в том числе наличием циркулирующих аутоантител к нормальным либо тем или иным образом модифицированным опухолевым белкам (называемым в данном случае опухолеассоциированными аутоантигенами). Последние включают в себя мутантные, неправильно свернутые или гликозилированные, сверхэкспрессированные белки или же белки с эктопической экспрессией, т.е. экспрессируемые опухолью, но не нормальной тканью того же происхождения/анатомической локализации. Источниками антигенов в опухолевой ткани также могут являться белки со скрытыми эпитопами, экспонирующимися в ходе опухолеспецифичного протеолиза.
Злокачественные новообразования – бич современного человечества. Антибиотики, вакцины [3], лекарственные препараты, иммунные сыворотки и т.д. сделали возможным лечение и предупреждение огромного количества болезней, пандемии которых в прошлом уносили миллионы жизней (чума [4], холера, оспа, сибирская язва и др). Средняя продолжительность жизни человека увеличилась, и наиболее частой причиной смерти стали сердечнососудистые заболевания и опухоли (25 и 23% от общего числа умерших в год, соответственно, по данным на 2008 г. [5]). Средняя пятилетняя выживаемость пациентов с диагностированными опухолями легкого (первое место по частоте встречаемости у мужчин и второе после рака молочной железы у женщин) составляет 16,3%. Однако, если проанализировать данные по выживаемости отдельно для каждой из стадий диагностированной опухоли, то окажется, что обнаружение новообразования на стадии локализованной опухоли дает 52% выживаемости, а на стадии регионарных и отдаленных метастазов – 24% и 4%, соответственно [6] (рис. 2).
Рисунок 2. Диагностика рака легкого и выживаемость пациентов по стадиям, 2001-2007 гг. [6].
Таким образом, наиболее перспективным путем снижения смертности от злокачественных новообразований является разработка и внедрение новых методов их ранней диагностики, наиболее многообещающим из которых является неинвазивное или малоинвазивное выявление биомаркеров опухоли (онкомаркеров) в крови, моче, слюне, бронхоальвеолярной жидкости, мокроте и опухолевой ткани пациента.
Онкомаркеры (в роли которых может выступать «молекулярный свидетель» наличия опухоли в организме практически любой природы, будь то белок, нуклеиновая кислота или липид) используются для диагностики злокачественных новообразований, их классификации и стадирования, мониторинга рецидивов, а также для оценки прогноза и выбора методики лечения (рис. 3).
Рисунок 3. Схематическое представление использования биомаркеров на разных стадиях опухолевой прогрессии [7].
Аутоантитела, специфичные к опухолеассоциированным аутоантигенам, могут быть использованы практически в любом из вышеуказанных случаев и, в отличие от традиционных биомаркеров, характеризуются целым рядом важных преимуществ, таких как:
Аутоантитела для диагностики – новое решение старых проблем!
Примером успешного применения аутоантител в диагностике злокачественных новообразований могут служить аутоантитела против опухолевого супрессора p53 [8], который часто мутирован в различных типах новообразований человека. Мутации приводят к нарушению третичной структуры белка, и в результате этого многие скрытые эпитопы становятся доступными для презентации их В- и Т-клеткам иммунной системы.
Анти-p53 антитела в сыворотке крови рабочих, подвергшихся воздействию винилхлорида, детектируются до клинического диагноза ангиосаркомы печени [9], а у пациентов с хронической обструктивной болезнью легких – до клинического диагноза рака легкого [10]. Некоторые исследования продемонстрировали корреляцию между наличием у пациентов анти-p53 аутоантител и выживаемостью (рак яичников, колоректальный рак и рак легкого); при этом в большинстве случаев регистрация аутоантител против p53 была ассоциирована с неблагоприятным прогнозом.
Нельзя не упомянуть об онконевральных антителах – аутоантителах, специфичных к нейрональным антигенам – белкам, в норме экспрессирующимся только в нервной ткани, однако в силу различных генетических нарушений начинающих продуцироваться в опухолевой ткани, вызывая так называемый паранеопластический синдром (ассоциированное с опухолью патологическое состояние, характеризующееся аутоиммунным поражением различных отделов нервной системы).
В качестве примера таких антигенов можно привести белки HuB, HuC и HuD (human antigens B, C, D), которые в норме экспрессируются во всех нейронах, а также при мелкоклеточном раке легкого, раке простаты и нейробластоме, и CDR2, в норме экспрессирующийся только в нейронах Пуркинье и ассоциированный с такими типами рака, как рак молочной железы, яичников и мелкоклеточный рак легкого.
Онконевральные антитела обнаруживаются у большей части пациентов с паранеопластическим синдромом, и было показано, что их появление четко и независимо коррелирует с развитием в организме пациента злокачественного новообразования [11]. В настоящее время по наличию тех или иных онконевральных антител можно судить о преимущественной локализации опухолевого очага, который в силу своих малых размеров не был обнаружен в ходе первичного осмотра пациента [12].
Другим примером биомаркеров антительной природы являются аутоантитела против раково-семенниковых (раково-гаметных) антигенов [13]. Они экспрессируются в широком спектре новообразований (меланома, рак яичников, рак легкого), но не в нормальных тканях организма, за исключением мужских семенников. Аберрантная экспрессия этих белков приводит к развитию на них Т-клеточного и/или B-клеточного ответа, т.е. к появлению аутоантител в кровотоке больного. Наиболее известными представителями данного семейства опухолеассоциированных аутоантигенов являются MAGE-1 (он был первым найденным антигеном этой группы), NY-ESO1, MAGE-3 и SSX2.
Пожалуй, наиболее ярким успехом в области разработки аутоантительных биомаркеров является диагностикум EarlyCDT-Lung, основу которого представляют антитела против семи опухолеассоциированных антигенов, созданный в 2007 году и уже успешно применяющийся для выявления рака легкого на его ранних стадиях. В данной панели присутствуют раково-семенниковые антигены (NY-ESO-1, CAGE, MAGE A4), опухолевый супрессор p53, транскрипционный фактор SOX2, онконевральный антиген HuD и GBU4-5 – белок, функция которого в клетке до сих пор плохо изучена. Интересно, что состав антигенной панели менялся в процессе разработки в сторону более высокой чувствительности и специфичности, которые в конечном счете удалось поднять до 41% и 91%, соответственно.
Рутинным тестом для обнаружения карцином легкого на Западе является компьютерная томография (КТ), однако было показано, что EarlyCDT-Lung диагностикум справляется с этой задачей лучше. КТ в силу разрешающей способности метода может не дать достоверных результатов при наличии у пациента опухоли с малыми линейными размерами, тогда как адаптивный иммунный ответ, формирующийся на опухолеассоциированные аутоантигены, может быть детектирован на самых ранних этапах развития новообразования.
Поиск антител против опухолеассоциированных аутоантигенов и разработка диагностикумов на их основе на сегодняшний момент являются одной из многообещающих ветвей современной диагностической онкоиммунологии. Простота исполнения и дешевизна, а, следовательно, доступность широкому кругу лиц, в будущем делает возможным применение таких диагностикумов в рамках планового медицинского обследования граждан, что является залогом своевременного обнаружения опухоли и полного выздоровления больного.
Вот так иммунная система не только стоит на страже организма, препятствуя развитию патогенов и опухолей, но и помогает исследователям находить все новые и новые методы диагностики различных заболеваний, – в частности, опухолей. Стрелы-антитела, прицельно пущенные В-клетками в мятежников, позволяют врачам найти и обезвредить последних, продлив тем самым жизнь пациента на долгие-долгие годы.
АУТОАНТИТЕЛА
АУТОАНТИТЕЛА — иммунные глобулины, направленные на собственные клетки и ткани организма.
Фундаментальный закон иммунологии состоит в том, что организм может образовывать антитела против чужеродных веществ различной природы, но, как правило, не отвечает иммунологической реакцией на компоненты собственных нормально функционирующих клеток и тканей организма, отличая «свое» от «чужого». Однако известен ряд болезней, вызываемых аутоантителами или сопровождающихся их появлением в сыворотке крови (см. Аутоаллергические болезни).
По своим физическим-химическим свойствам аутоантитела тождественны антителам (см.).
Различают три вида аутоантител: полные аутоантитела, реагирующие с соответствующими антигенными структурами клеток или тканевыми экстрактами (антитела при заболеваниях щитовидной железы, антилейкоцитарные антитела при лейкопениях и холодовые Гемагглютинины при приобретенных гемолитических анемиях — аутоагглютинины); неполные аутоантитела к антигенам пораженного органа (при ревматизме и др.) и так называемые сывороточные факторы (антинуклеарный фактор при системной красной волчанке, ревматоидный фактор при ревматоидном артрите).
В настоящее время нет единого мнения в понимании механизмов образования аутоантител, их объективной значимости для патогенеза аутоиммунных болезней и возможности практического использования в качестве дополнительного диагностического критерия активности процесса.
Существуют две принципиальные возможности образования аутоантител: 1) в результате повреждения клеток и тканей и появления новых антигенов (см. Аутоантигены); 2) из-за нарушения в системе, продуцирующей антитела, обусловленного преодолением естественной иммунологической толерантности. Для объяснения механизма появления аутоантител в результате нарушения системы, продуцирующей антитела, исходят из положения, что некоторые клетки и ткани организма не могут в нормальных условиях контактировать с иммунной системой организма и против них не формируется естественная толерантность. Однако при особых условиях эти изолированные обычно ткани вступают в контакт с иммунной системой. Известной болезнью этого типа является болезнь Хасимото (см. Хасимото болезнь). Она возникает потому, что к тиреоглобулину не формируется естественная иммунологическая толерантность и возникают соответствующие аутоантитела. Правда, пассивный перенос аутоантител обезьянам не приводит к поражению щитовидной железы. Этим же путем, вероятно, возникают некоторые формы первичной микседемы. К анатомически изолированным тканям и биологическим средам, к которым не формируется естественная иммунологическая толерантность, относятся стекловидное тело, хрусталик глаза, сперма и ткань мозга. Освобождение доступа к этим тканям и биологическим средам в результате их повреждения, застоя или воспаления может привести к появлению соответствующих аутоантител. Так, например, может возникнуть симпатическое повреждение глаз или стерильность у мужчин.
Эта точка зрения об антигенности изолированных тканей и биологических сред нуждается в дальнейшем уточнении. Установлено, что тиреоглобулин и вещества спермы относительно часто поступают в кровь, не вызывая образования аутоантител. Клинические наблюдения, семейное предрасположение и появление таких заболеваний у однояйцовых близнецов, а также комбинация с другими аутоиммунными заболеваниями указывают на связь способности продуцировать аутоантитела с генетическим дефектом «иммунологического гомеостаза».
Новые иммунокомпетентные клетки возникают в результате мутации или в результате преодоления естественной иммунологической толерантности. Этот механизм связывается с деятельностью «запретных клонов». Интересна тенденция к усиленному образованию аутоантител при генерализации заболеваний лимфоидно-ретикулярной системы под влиянием рентгеновских лучей или в результате введения цитостатических средств. Возможно, что цитостатические средства выключают нормальный механизм наблюдения, что способствует возникновению запретных клонов. В формировании естественной иммунологической толерантности большую роль играет вилочковая железа.
Аутоантитела могут формироваться к отдельным внутриклеточным антигенам или скрытым детерминантам в молекулах белков (так наз. секвестрированные антигены). Последние могут быть выявлены при расщеплении белка ферментами или в результате изменения конфигурации молекулы под влиянием физических и химических факторов. Например, после повторного введения папаина или очищенных препаратов протеиназы стрептококка в организме животных выявляются разнообразные А. Длительная иммунизация различными антигенами вызывает у животных появление аутоантител к иммуноглобулинам разных классов (ревматоидноподобный фактор). Выявление скрытых детерминант фактически трудно дифференцировать от антигенов, возникающих в результате повреждения собственных клеток и тканей организма и приобретения ими частичной чужеродности.
При иммунизации животных гетерологичной тканью (тканью сердца или соединительной тканью) формируются антитела не только к чужеродным, но и к антигенам, общим для донора и реципиента. В связи с этим большое значение имеют многочисленные факты выявления общих антигенов у микробов и человека. В частности, вероятным механизмом возникновения аутоантител к ткани сердца при ревматизме является преодоление иммунологической толерантности путем иммунизации общими антигенами для стрептококка и ткани сердца человека.
Важным вопросом является роль аутоантител в развитии аутоиммунных реакций. Аутоиммунная реакция немедленного типа вызывается иммунными глобулинами, а замедленного типа — клеточными реакциями. Благодаря иммунным глобулинам возникает большинство аутоиммунных болезней, связанных с поражением органов кроветворения. К ним относятся аутоиммунная гемолитическая анемия, лейкоцито- и тромбоцитопатии. Выявление аутоантител при этих заболеваниях осуществляется антиглобулиновой реакцией Кумбса (см. Кумбса реакция). Оказалось возможным выявить агглютинирующие и Цитолизирующие (гемолизины) аутоантитела, вызывающие повреждающее действие на мембраны. Под влиянием аутоантител клетки становятся менее стойкими, нарушается дыхание, укорачивается продолжительность их жизни. Электронномикроскопическое изучение таких эритроцитов позволило выявить фиксацию иммуноглобулинов на их поверхности. Аутоантитела способствуют отложению различных белков на поверхности эритроцитов. Выявляются также и аутоантитела, оказывающие опсонизирующий эффект, способствующий действию макрофагов.
Агглютинирующие и гемолизирующие аутоантитела имеют различный температурный оптимум. Если он лежит в пределах нормальной температуры тела, говорят о тепловых аутоантителах, при пониженной — о холодовых. Доказано наличие аутоантител, направленных против отдельных элементов клетки. Антимитохондриальные аутоантитела, например, выявляются в 80—90% случаев первичного билиарного цирроза. Аутоантитела к ДНК у больных системной красной волчанкой подавляют матричную активность ДНК в РНК-полимеразной системе, оказывают ингибирующий эффект на синтез нуклеиновых кислот в культуре иммунокомпетентных лимфоидных клеток. При нефритах обнаружены органоспецифические противопочечные аутоантитела, обладающие цитотоксическим эффектом в культуре тканей.
Аутоиммунные глобулины могут оказывать не только цитотоксическое действие, но и тормозить функцию гуморальных факторов. Среди них наиболее известны аутоантитела, нейтрализующие связь витамина B12 и желудочного фактора, что ведет к торможению резорбции витамина B12 и возникновению пернициозной анемии. Аутоиммунная реакция немедленного типа может проходить с потреблением комплемента, что наблюдается, правда, не во всех случаях.
Большая часть известных аутоиммунных реакций протекает с участием не только аутоантител, но и клеток, лимфоцитов, в особенности тех, которые могут при определенных условиях повреждать клетки и ткани собственного организма.
При аутоиммунных болезнях иммунные глобулины и клеточные иммунные реакции тесно взаимодействуют друг с другом. Это, например, бывает при аутоиммунном заболевании — системной красной волчанке. Большая часть органных изменений, наблюдаемых при этом заболевании, обусловлена, вероятно, клеточными аутоиммунными реакциями, в то время как волчаночные клетки (LE-клеточный феномен, от начальных букв lupus erythematodes) представляют собой фагоциты, поглотившие комплекс антинуклеарного фактора с ДНК. Аналогичным путем у больных ревматоидным артритом в тканях пораженных суставов появляются рагоциты — фагоциты, поглотившие ревматоидный фактор, связанный с собственными иммуноглобулинами. Выявление LE-клеточного феномена и антинуклеарного фактора, рагоцитов и ревматоидного фактора имеет большое диагностическое значение и широко применяется на практике.
Важным доказательством участия аутоантител в развитии кардита при ревматизме является обнаружение методом иммунофлюоресценции связанного иммуноглобулина в тканевых срезах. Преимущественное отложение иммуноглобулина в участках фибриноидного некроза при ревматизме и других коллагенозах, возможно, является результатом реакции аутоантител и патологически измененной ткани, так как в этих же участках найдено отложение комплемента. Эти же реакции могут быть причиной повреждения соединительной ткани при данных заболеваниях. Связанный иммуноглобулин найден не только при ревматизме, но и у больных эндомиокардиальным фиброзом. После инфаркта миокарда и у практически здоровых лиц связанных иммуноглобулинов не обнаружено.
Несмотря на большое число предположений и многочисленность фактов, подтверждающих правильность аутоиммунной теории, встречаются большие затруднения при анализе патогенеза отдельных аутоиммунных болезней. Далеко не при всех аутоиммунных болезнях удается выявить патогенный характер аутоантител. При хронических болезнях печени выявляются антиядерные, антимикросомальные и антимышечные аутоантитела, которые только отчасти являются органоспецифическими и даже видоспецифическими. При язвенном колите обнаружены антитела против мукополисахаридного антигена клеток кишечника, которые in vitro не обладают цитотоксическим эффектом против этих клеток.
Аутоантитела, как и антитела вообще, отражают в первую очередь иммунологическую реактивность: разнообразные факторы, повышающие эту реактивность, приводят соответственно к повышению продукции аутоантител, и наоборот. Выработка аутоантител уменьшается под влиянием значительных доз глюкокортикоидов и цитостатических средств. Титр аутоантител повышается при отмене антибиотиков, которые обладают некоторым депрессивным эффектом. Титр кардиальных аутоантител повышается при назначении больным с вяло и латентно текущим ревмокардитом диеты с увеличенным содержанием белка; это сочетается с улучшением самочувствия больных и благоприятными сдвигами объективных данных. Имеются факты, полученные на основе изучения экспериментальной модели, о преимущественно защитной роли кардиальных аутоантител. Из этого следует, что способность организма отвечать продукцией соответствующих аутоантител определяется многочисленными факторами и условиями, в результате чего, а также из-за разной чувствительности использованных методов выявления аутоантител не удалось прийти к единому мнению о роли аутоантител при развитии аутоиммунных болезней и их диагностической ценности.
Интенсивно накапливаются данные о роли аутоантител при инфаркте миокарда, атеросклерозе, остеохондрозе, ожоговой болезни, генерализованных дерматозах, шизофрении, пародонтозе и др. Для более четкого определения аутоиммунных болезней и целенаправленного изучения аутоантител и других аутоиммунных реакций целесообразно придерживаться так наз. критериев Витебского (E. Witebsky, 1961): 1) обнаружение аутоантител или аутоагрессивных клеток; 2) выявление аутоантигена; 3) изучение продукции аутоантител к аутоантигену в опытах на животных; 4) моделирование характерных для человека поражений в органах сенсибилизированных животных; 5) пассивная передача болезни сывороткой или иммунокомпетентными клетками.
Начиная с работ И. И. Мечникова, приводились многочисленные данные об участии аутоиммунных реакций в регуляции нормальной жизнедеятельности клеток и тканей в постоянно протекающем процессе регенерации. Аутоантитела могут не только угнетать жизнедеятельность соответствующих клеток и тканей, но и стимулировать их. Процесс старения живого существа в определенной степени связан с аутоиммунными реакциями. В многочисленных опытах на животных показано, что процесс старения может быть ускорен или, наоборот, замедлен при воздействии на иммунологическую реактивность. Длительная иммуносупрессия тормозит старение, а моделирование аутоиммунных процессов существенно ускоряет его. Можно предполагать, что с увеличением возраста иммунологические реакции постепенно утрачивают присущую им точность, для них все труднее отличать «свое» от «чужого». Это в свою очередь приводит к более частой продукции аутоантител.
Кроме того, с возрастом может происходить суммация действий инфекционных агентов и других повреждающих факторов, вызывающих появление аутоантител.
Библиография: Бернет Ф. Целостность организма и иммунитет, пер. с англ., М., 1964; Гауровиц Ф. Иммунохимия и биосинтез антител, пер. с англ., М., 1969; Дыгин В. П. Аутоиммунные заболевания в клинике внутренних болезней, JI., 1970; Иоффе В. И. Клиническая и эпидемиологическая иммунология, Д., 1968; Купчинскас Ю.К. Клиника и иммунология аутоаллергических заболеваний и лекарственной аллергии, М., 1963; Лямперт И. М. Этиология, иммунология и иммунопатология ревматизма, М., 1972; Сачков В. И. Иммунологические методы изучения ревматизма и других коллагеновых болезней, М., 1962, библиогр.; он же, Антигенные свойства сывороточных белков при некоторых коллагенозах, М., 1969, библиогр.; Textbook of immunopathology, ed. by P. A. Miescher a. H. J. Müller-Eberhard, v. 1—2, N. Y., 1968.
В. И. Сачков, Ф. Ф. Волченко.