Байпас ибп что это

байпас (в источнике бесперебойного питания)

байпас
1. Режим работы источника бесперебойного питания (ИБП) в котором вход ИБП напрямую или через корректирующие и фильтрующие цепи соединен с выходом ИБП. В таком режиме ИБП практически не способен влиять на качество выходного напряжения. В режим байпаса ИБП переводят либо принудительно с панели управления, либо ИБП переходит в этот режим самостоятельно при перегрузке или неисправности.

2. Часть схемы ИБП, обеспечивающая работу режима байпас.
Различают электронный (статический байпас) и механической (сервисный байпас). Электронный байпас защищает нагрузку ИБП от перегрузки, а оборудование от отключения питания при аварии в ИБП. Механический байпас предназначен для отключения ИБП от сети при обслуживании без отключения защищаемого оборудования.
[http://www.radistr.ru/misc/document423.phtml]

by-pass
Functional UPS module that connects the load of an On-Line UPS directly to mains in case of overload or UPS failure.
[http://www.upsonnet.com/UPS-Glossary/]

Байпас ибп что это. 0423. Байпас ибп что это фото. Байпас ибп что это-0423. картинка Байпас ибп что это. картинка 0423.

Байпас в ИБП с двойным преобразованием

Байпас ибп что это. 0424. Байпас ибп что это фото. Байпас ибп что это-0424. картинка Байпас ибп что это. картинка 0424.
Схема байпаса

Байпас является обязательным элементом ИБП двойного преобразования большой и средней мощности.
Байпас предназначен для соединения выхода ИБП (т. е. нагрузки) с входом ИБП (т. е. с питающей сетью), минуя схему ИБП.
Байпас представляет собой комбинированное электронно-механическое устрой­ство, состоящее из так называемого статического байпаса и ручного (механическо­го,т. е. контактного) байпаса.

Используется также термин автоматический байпас.
В некоторых случаях байпас применяют при первом включении оборудования, когда пусковая мощность нагрузки превышает мощность ИБП.

Ручной (механический, т. е. контактный) байпас представляет собой контактный выключатель нагрузки, шунтирующий статический байпас. Он предназначен для вывода ИБП из работы со снятием напряжения с элементов ИБП. При включенном ручном байпасе питание нагрузки осуществляется через цепь «вход байпаса-ручной байпас-выход ИБП». Остальные элементы ИБП: выпрямитель, инвертор, аккумуляторная батарея (АБ), ста­тический байпас — на время включения ручного байпаса могут быть обесточены (отключены от сетевого питания и нагрузки) для ремонта, регулировок, осмотров и т. д.
Об отключении АБ можно говорить с некоторой натяжкой, поскольку АБ в заряжен­ном состоянии является мощным источником постоянного напряжения, пред­ставляющим опасность для обслуживающего персонала. По классификации «Меж­отраслевых правил по охране труда (правила безопасности) при эксплуатации элек­троустановок» работы с АБ следует относить к виду работ с частичным снятием на­пряжения. При необходимости замены аккумуляторов АБ ИБП переводят на руч­ной байпас, специальным инструментом разделяют АБ на отдельные аккумуля­торы, после чего опасность поражения электрическим током устраняется.

При работе в режиме Байпас ИБП не имеет возможно­сти обеспечивать бесперебойное питание потребителей. Такой режим должен сопровождаться административно-техническими мероприятиями для исключения нежелательных последствий для потребителей. Самая простая мера — проведение профилактических и ремонтных ра­бот в то время, когда потребители не работают.

Таким образом байпас позволяет:

Источник

Для чего нужен байпас для стабилизатора напряжения

Байпас (англ. Bypass) – обходной путь, обводной канал, обход. Чаще всего, такой способ подключения используется в системах отопления. Каждый радиатор, насос или конвектор устанавливается с байпасом. Это позволяет исключить неисправный элемент, не нарушая циркуляцию системы. В электрике этим термином обозначается путь электроснабжения, в обход кого-либо прибора питания, на случай выхода этого прибора из строя. К приборам, которые оборудуются байпасом, относятся:

Подача напряжения через электро-байпас – нештатная ситуация, но это лучше, чем полное отключение электропитания.

Что такое — режим «байпас»

«Bypass» с английского переводится как «обход» и означает резервный путь для гарантированного функционирования системы при возникновении аварийной ситуации.

Байпас — это функция в стабилизаторе напряжения, позволяющая выполнить коммутацию входного сигнала непосредственно на выход, минуя все функциональные блоки. Т.е. в данном режиме напряжение подается через стабилизатор к электропотребителю без выравнивания его до номинальных значений.

Байпас ибп что это. lazy placeholder. Байпас ибп что это фото. Байпас ибп что это-lazy placeholder. картинка Байпас ибп что это. картинка lazy placeholder.

Виды байпаса в стабилизаторах напряжения

1. По принципу работы байпас может быть механическим или электронным.

Механический (ручной) байпас — коммутация, когда напряжение подается со входа на выход без стабилизации, осуществляется вручную с помощью переключателей, кнопок или тумблеров. Вот как это выглядит на примере моделей из нашего каталога.

Механический байпас обеспечивает абсолютное невмешательство электроники во входной сигнал, и является более надёжным поскольку не содержит активных элементов, способных выйти из строя вследствие нестабильности параметров.

Байпас ибп что это. lazy placeholder. Байпас ибп что это фото. Байпас ибп что это-lazy placeholder. картинка Байпас ибп что это. картинка lazy placeholder.

Электронный (автоматический) — коммутация осуществляется автоматически с помощью полупроводниковых ключей. Например, при неисправности какого-либо узла стабилизатора или при токовой перегрузке.

Автоматический и ручной байпас не являются взаимоисключающими. Так, стабилизатор напряжения со встроенным электронным байпасом можно оборудовать внешним ручным байпасом. Автоматический будет срабатывать в случае неисправности стабилизатора, а ручной использовать при необходимости подать питание в обход стабилизатора. Например, при подключении нагрузки большой мощности, или проведении ремонтно-профилактических работ.

2. По способу исполнения байпас может быть внешним или встроенным.

Внешний байпас выполнен в виде отдельного блока с переключателем, который подключается к стабилизатору. Применяется как для однофазных, так и трёхфазных стабилизаторов.

Байпас ибп что это. lazy placeholder. Байпас ибп что это фото. Байпас ибп что это-lazy placeholder. картинка Байпас ибп что это. картинка lazy placeholder.

Встроенный байпас конструктивно находится внутри корпуса стабилизатора, и включается автоматически или вручную с помощью тумблера.

Байпас ибп что это. lazy placeholder. Байпас ибп что это фото. Байпас ибп что это-lazy placeholder. картинка Байпас ибп что это. картинка lazy placeholder.

Что такое байпас ИБП и для чего он нужен?

Байпас (англ. bypass – обход) является одним из режимов работы источника бесперебойного питания, при котором электроснабжение подключенных к ИБП приборов выполняется в обход основной схемы его работы, то есть напрямую от электросети. Данный режим обеспечивается специальным механизмом, который может быть внутренним блоком ИБП или внешним прибором, подключающимся к источнику питания, и служащим для создания обходной цепи.

Байпас выполняет важную функцию: обеспечивает безразрывное переключение питания ответственной нагрузки с ИБП на входную сеть и поддерживает работоспособность подключенного оборудования при нештатных ситуациях в работе источника питания, например, в случае выхода устройства из строя или его перегрузки, а также для проведения настроек, сервисного обслуживания или его ремонта.

Байпас ибп что это. lazy placeholder. Байпас ибп что это фото. Байпас ибп что это-lazy placeholder. картинка Байпас ибп что это. картинка lazy placeholder.

Кроме того, в некоторых моделях ИБП при удовлетворительном качестве электроэнергии данный функционал позволяет перевести нагрузку на питающую сеть с целью снижения потерь электроэнергии от работы устройства (ECO-режим или экономичный режим).

Когда ИБП переходит в режим «байпас», подключенные электроприборы не защищены от воздействия некачественного сетевого напряжения, в том числе и от полного отключения электроэнергии.

Использование режима «байпас» на практике

1. Если стабилизатор напряжения выйдет из строя, байпас позволит не остаться без электропитания. В таком случае нужно просто включить для стабилизатора режим «байпас» и напряжение будет подаваться в обход него без изменений. Если стабилизатор не поддерживает работу в транзитном режиме, придется вызывать электрика чтобы он перекинул провода и восстановил питание напрямую от сети.

Причем, в этом случае байпас может выполнять защитную функцию, контролируя выходное напряжение — если входное напряжение выйдет за пределы рабочего диапазона, он отключит нагрузку. В случае с электронным байпасом, подача напряжения на нагрузку возобновляется автоматически при нормализации сетевых параметров.

Электронный байпас позволяет задавать параметры рабочего диапазона входного напряжения. Кроме того, в зависимости от заданных настроек, при аварии он может: выводить на табло причину неисправности и отключать нагрузку, либо выводить причину неисправности и подавать напряжение на нагрузку непосредственно из сети.

Байпас для питания электродвигателей

В отличие от стабилизаторов, частотные преобразователи модифицируют, как это следует из названия, частоту электрического тока. Регулировка этого параметра, плавно изменяет частоту вращения электродвигателя. Работа двигателя в обход частотного преобразователя, возможна в части технологических процессов, для их завершения.

Устройства плавного пуска предотвращают преждевременный износ электродвигателей, работающих в режиме пуск/стоп, снижают отрицательное влияние высоких пусковых токов. После запуска двигателя, необходимость в работе УПП отпадает, электромотор переводится на прямое электропитание от сети. Эту задачу выполняет байпас, являющийся частью устройства плавного пуска.

Зачем нужен bypass?

Когда нужно запитать всю нагрузку минуя стабилизатор, байпас избавляет пользователя от необходимости возиться с клеммами и проводами. Достаточно просто щелкнуть переключателем и вот уже напряжение пошло в обход стабилизатора, как будто его и нет вовсе.

Ситуации, когда целесообразно задействовать режим «bypass» могут быть самыми различными. Например,

Разновидности

Байпас может быть механическим или электронным, внутренним или внешним, а также одно- или многофазным.

По способу коммутации различают механический или электронный байпас.

Механический (ручной) байпас

Приводится в действие непосредственно самим потребителем с помощью ручек, кнопок, тумблеров и других подобных приспособлений.

Механический характерен для внешнего однофазного байпаса, который используется в бытовых и универсальных стабилизаторах напряжения, где потребитель страхуется от аварийных ситуаций и предусматривает качественный уход за устройством.

Внешний однофазный байпас применяется в приборах мощностью от 3 кВА, там устройство подключается к сети с помощью клеммного соединения и, в случае аварийной ситуации, нет возможности просто взять и вытащить вилку из розетки.

На менее мощных стабилизаторах иногда просто делают дополнительные розетки в обход стабилизатора. Именно такой байпас реализован в модели IEK Simple мощностью 0.35 кВА:

Байпас ибп что это. lazy placeholder. Байпас ибп что это фото. Байпас ибп что это-lazy placeholder. картинка Байпас ибп что это. картинка lazy placeholder.

Ручной (или механический) bypass включается только после предварительного отключения стабилизатора. На корпусе стабилизатора выключатели питания и байпаса обычно расположены рядом друг с другом, как бы намекая, что они взаимосвязаны.

Ручное отключение байпаса производится в обратной последовательности: сначала выключается собственно байпас и только после этого включается питания стабилизатора. Т.е. нагрузка при этом тоже на какое-то время оказывается обесточенной.

Электронный байпас

Работает на реле или полупроводниковых ключах, которые могут переключаться автоматически по заданному алгоритму (например, в случае нештатной работы стабилизатора) или управляться дистанционно с помощью органов управления на панели стабилизатора (нажали на кнопочку и байпас включился).

Применение электронного байпаса имеет следующие плюсы:

В случае срабатывания автоматического байпаса из-за критических параметров в работе стабилизатора, устройство начнет передавать нагрузку к потребителям непосредственно от сети. При возвращении параметров к нормальным значениям режим автоматически отключается.

По расположению относительно самого стабилизатора, байпас может быть внутренним (т.е. встроенным в сам стабилизатор) или внешним.

Внутренний (встроенный) байпас

Внутренний байпас — это схема обхода, которая реализована прямо в корпусе стабилизатора. Наружу выведен только переключатель байпаса.

Бытовые стабилизаторы далеко не всегда имеют встроенный байпас, поэтому при выборе прибора обращайте внимание на этот момент. В принципе, байпас для бытового стабилизатора — вещь удобная, но не обязательная. Однако, если планируется работа стабилизатора на режимах, близких к критичным, то функция байпаса может пригодиться.

Внешний байпас

Внешний — это когда цепь обхода собрана вокруг стабилизатора. Абсолютно любой стабилизатор (независимо от его мощности или количества фаз) можно снабдить внешним байпасом. Поэтому, если для ваших целей необходим байпас, а он не предусмотрен схемой стабилизатора, смело подключайте внешний байпас.

Схема внешнего однофазного байпаса

Вообще, схема, реализующая байпас, должна решить всего одну задачу: отключить фазные проводники от входа и выхода стабилизатора и замкнуть их напрямую. Нулевые проводники можно не трогать. Для этого идеально подходят трехполюсные кулачковые переключатели серии 4G (схема 56, на два положения).

Вот, например, схема байпаса для стабилизатора с использованием переключателя OptiSwitch 4G25-56-U-R114 (подойдет для мощности до 4 кВт):

Байпас ибп что это. lazy placeholder. Байпас ибп что это фото. Байпас ибп что это-lazy placeholder. картинка Байпас ибп что это. картинка lazy placeholder.

Для более мощного стабилизатора, придется купить более мощный переключатель. Сама схема остается без изменений. Такие переключатели выпускают на токи от 10 до 100А, этого более чем достаточно для бытовых нужд. Естественно, чем больше у переключателя коммутационная мощность, тем он дороже. Например, для схемы байпаса к стабилизатору на 2.5 кВт подойдет переключатель 4G16-56 (16А, 1800 руб), а для стабилизатора на 10 кВт придется раскошелиться на 4G63/100-56 (100А, 10800 руб).

Методы переключения в байпас

Переключение стабилизатора в режим байпаса можно осуществить внешним и внутренним переключателем. Они в свою очередь могут быть механическими или электронными.

Внешние устанавливаются по желанию потребителя. Использовать их очень удобно, если возникает потребность полностью обесточить и изъять устройство, например, для ремонта.

Самое простое внешнее переключение осуществляется встраиваемым в электрический щиток трёх позиционным кулачковым переключателем. Это механическое устройство позволяет одним щелчком производить переключение режима работы стабилизатора. Иногда регуляторы электроэнергии помещают в специально изготовленные для них шкафы. Их размещают в помещениях потребителя или на электрической опоре, рядом с участком. Такие шкафы могут изначально оснащаться внешними переключателями электронного или механического типа.

Внешним переключателем можно дополнить сеть стабилизатора любого типа, независимо от комплектации.

Важно не забывать после окончания ремонтных работ переводить переключатель на рабочий режим работы стабилизатора.

Механический способ

Встроенный механический переключатель работает аналогично внешнему. Переключение осуществляется тумблером или рукояткой. Такими переключателями оборудуют регуляторы мощностью от 3 кВА. Стабилизаторы меньшей мощности обычно изготавливают переносными, и оснащают обходными розетками. Режимы работы переключателей и розеток обозначают как «Стабилизация» и «Байпас».

Механические переключатели просты и надёжны. Поэтому уже давно и успешно используются в электрических схемах.

Внимание! В режим байпас, стабилизатор можно переводить, только отключив его от сети. Производители специально располагают выключатели рядом, тонко намекая на их взаимосвязь. Т.е. сначала необходимо выключить тумблер или кнопку «Сеть», и только потом включить режим байпас. До этого, следует убедиться, что не работают двигатели холодильника, кондиционера, стиральной машины и прочих достаточно мощных потребителей. Если двигатели в работе, желательно дождаться их остановки.

Отключение режима байпас производится в обратной последовательности.

Электронный способ

Электронное переключение осуществляется двумя способами – ручным и автоматически.

В ручном режиме, при нажатии на кнопку «Байпас», электрический сигнал поступает на реле или полупроводники. И уже ими включается режим обхода стабилизатора. При таком варианте переключения следует руководствоваться рекомендациями для механического способа.

В автоматическом режиме электронный способ переключения в режим байпас осуществляется процессором с помощью реле либо полупроводников. Автоматически электричество может запускаться в обход регулятора по двум причинам — это критические ситуации либо стабильное напряжение на протяжении длительного времени. В обоих случаях стабилизатор контролирует входящее напряжение.

Источник

Схема байпас (Bypass) – «обход»

Байпас. Bypass. Обход.

Байпас – это режим питания нагрузки сетевым напряжением в обход основной схемы системы бесперебойного питания (СБП). Например, в обход ИБП, стабилизатора или дизель-генератора. Часто байпасом называют саму обходную защитную линию (цепь) и её сопутствующие коммутационные устройства.

Переход устройства в режим байпас может выполняться автоматически или вручную. ИБП со схемой On-Line автоматически переходят в режим байпас при перегрузке выходных цепей или при возникновении внутренних неисправностей. Таким образом, нагрузка защищается не только от сбоев в питающей электросети, но и от неполадок в самом ИБП. Возможность ручного перевода устройства в режим байпас предусмотрена на случай проведения его технического обслуживания без отключения нагрузки.

Байпас ибп что это. b 330 0 16777215 0 images stories reference terminology bypass 001. Байпас ибп что это фото. Байпас ибп что это-b 330 0 16777215 0 images stories reference terminology bypass 001. картинка Байпас ибп что это. картинка b 330 0 16777215 0 images stories reference terminology bypass 001.
ИБП в нормальном режиме работы
Байпас ибп что это. b 330 0 16777215 0 images stories reference terminology bypass 002. Байпас ибп что это фото. Байпас ибп что это-b 330 0 16777215 0 images stories reference terminology bypass 002. картинка Байпас ибп что это. картинка b 330 0 16777215 0 images stories reference terminology bypass 002.
ИБП в режиме байпас

Байпасы можно разделить на внутренние (технологически встроенные в оборудование) и внешние. Основные типы встроенных байпасов: статический (симисторный, симисторно-релейный), релейный и ручной (рубильник, автомат).

В системах на базе дизель-генераторных установок (ДГУ) с автоматическими панелями переключения нагрузки (АППН) обычно используются внешние схемы байпас.

Такие устройства, как стабилизаторы напряжения большой мощности также могут иметь встроенные обходные цепи, но чаще всего их байпас выполнен в виде отдельного кабинета, то есть внешнего блока.

В источниках бесперебойного питания (ИБП) используются как внутренние (встроенные) так и внешние схемы байпас. Из встроенных наилучшими характеристиками обладает так называемый статический байпас. У него нулевое время переключения инвертор – байпас и обратно. Статическим байпасом оснащены все ИБП средней мощности (симисорная или симисторно-релейная схема байпас) и большой мощности (симисторная схема байпас). В ИБП малой мощности чаще всего используют релейный байпас. Помимо статического байпас все мощные ИБП и большинство ИБП средней мощности имеют ручной байпас.

По способам исполнения внешние схемы байпас можно разделить на следующие типы:

При этом могут использоваться любые виды коммутационных устройств: рубильники, автоматы, статические переключатели и др.

По скорости переключения схемы байпас можно классифицировать на два основные типа:
По степени защиты от обратного напряжения схемы байпас бывают следующих видов:
По наличию гальванической развязки вход/выход схемы Bypass можно существуют следующие типы:
По фазности (по количеству полюсов)
Внимание!

Во избежании аварии, установка, сборка, эксплуатация систем Bypass должна производиться авторизованным персоналом при строгом соблюдении требований завода-производителя основного оборудования СБП (ИБП, ДГУ, стабилизатор напряжения и др.) с учетом специфики их работы. Необходимо также соблюдать нормативы местных требований (ПУЭ).

Дополнительные материалы для специалистов: статья «Схемы байпас: основные типы и сферы их применения»

Источник

Источники бесперебойного питания без секретов

ИБП с двойным преобразованием энергии (Double Conversion UPS)

На рисунке 17 представлена блок-схема ИБП с двойным преобразованием энергии.

Байпас ибп что это. ris 17. Байпас ибп что это фото. Байпас ибп что это-ris 17. картинка Байпас ибп что это. картинка ris 17.

Рис. 17. ИБП с двойным преобразованием энергии

Инвертор преобразует весь поток мощности из напряжения постоянного тока в напряжение переменного тока.

ИБП с двойным преобразованием энергии может работать в трех режимах. Работа от сети

Если в сети есть «нормальное» напряжение, то вся мощность, потребляемая нагрузкой, проходит через выпрямитель ИБП. Выпрямитель преобразует напряжение электрической сети в стабилизированное напряжение постоянного тока. Оно используется для заряда батареи и для питания инвертора.

Инвертор преобразует напряжение постоянного тока в напряжение переменного тока, которым и питается нагрузка. Работа от батареи

Выпрямитель ИБП с двойным преобразованием выдает стабилизированное напряжение постоянного тока. Т.е. независимо от величины напряжения переменного тока на входе выпрямителя напряжение постоянного тока на его выходе сохраняется постоянным. Естественно, напряжение остается стабильным только если входное напряжение не выходит из некоторого диапазона допустимых напряжений. Этот диапазон называется диапазоном входных напряжений ИБП.

Диапазон входных напряжений ИБП с двойным преобразованием не остается постоянным. Его величина (или вернее его нижняя граница) зависит не только от конкретной модели ИБП, но и его нагрузки.

Если напряжение сети становится меньше нижней границы диапазона входных напряжений (т.е. выпрямитель уже не может стабилизировать напряжение), напряжение постоянного тока на выходе выпрямителя уменьшается и становится ниже напряжения заряженной батареи ИБП. Никакого переключения не происходит. Просто инвертор начинает частично питаться от батареи, а батарея начинает разряжаться. При дальнейшем уменьшении напряжения или если напряжение пропадает совсем, инвертор начинает полностью питаться от батареи. Говорят, что ИБП перешел на режим работы от батареи.

Работа ИБП от батареи продолжается некоторое время, определяемое зарядом батареи и нагрузкой. После того, как батарея разрядится до напряжения примерно 1.7 В на элемент, инвертор ИБП будет отключен автоматикой, защищающей батарею от необратимого переразряда.

Если напряжение на входе ИБП снова поднимется до нормального, выпрямитель опять начнет заряжать батарею и питать инвертор. Режим работы через статический байпас

Основные элементы ИБП с двойным преобразованием при работе от сети постоянно находятся под нагрузкой. Если бы ИБП с двойным преобразованием был построен по схеме, придуманной нами во второй главе, то он имел бы низкую надежность. Ведь при выходе из строя инвертора, подача напряжения к нагрузке прервалась бы и ИБП не только не выполнил бы своего предназначения, но даже сам из-за своей поломки мог бы стать причиной потери данных в подключенных к нему компьютерах или отключения каких-либо подключенных к нему важных устровйств.

При выходе из строя инвертора или его перегрузке, срабатывает переключатель (размыкается линия «инвертор-нагрузка» и замыкается линия «байпас-нагрузка») и нагрузка продолжает питаться от сети.

К сожалению не все ИБП с переключением имеют статический байпас. На мой взгляд такие ИБП вообще не следует использовать, поскольку они не надежны.

Рассмотрим теперь работу отдельных элементов ИБП. Выпрямитель

Выпрямитель ИБП с двойным преобразованием должен иметь мощность, достаточную для двух его основных функций. Его максимальный выходной ток должен быть не меньше суммы максимального входного тока инвертора и максимального зарядного тока батареи.

Для правильного заряда батареи выпрямитель должен очень точно (с точностью не хуже 1 %) поддерживать напряжение плавающего заряда на батарее.

Иногда в ИБП с двойным преобразованием энергии применяют регулируемые тиристорные выпрямители.

В некоторых случаях в ИБП устанволены пассивные (диодные) выпрямители, а для точного регулирования напряжения на аккумуляторной батарее используется преобразователь напряжения постоянного тока. Иногда ИБП, построенные по такой схеме их производители называют ИБП с тройным преобразованием. Инвертор, синхронизация с сетью и переключение на статический байпас

Инвертор ИБП с двойным преобразованием энергии имеет возможность изменения выходной частоты инвертора для синхронизации выходного напряжения инвертора с сетью.

Эта функция используется в ИБП с двойным преобразованием постоянно и просто необходима для переключения ИБП на статический байпас. Рассмотрим это переключение несколько подробнее.

Для того, чтобы ИБП с двойным преобразованием имел непрерывное выходное напряжение без скачков и разрывов на всех режимах работы, нужно обеспечить гладкое переключение на статический байпас при выходе из строя инвертора или его перегрузке.

Для этого необходимо, чтобы фаза и частота сетевого напряжения (т.е. напряжения в цепи байпаса) в момент переключения были такими же, как фаза и частота выходного напряжения инвертора.

Но мы не можем управлять фазой и частотой сети, следовательно мы должны добиться желаемой цели за счет настройки инвертора. Мы не можем, как в ИБП, взаимодействующим с сетью, подстроить фазу и частоту инвертора перед самым переключением. Ведь мы, к сожалению, не знаем, в какой момент инвертор выйдет из строя или испытает перегрузку.

Поэтому инвертор ИБП с двойным преобразованием должен всегда быть синхронизован с сетью. Точнее говоря, должна быть достигнута синхронизации инвертора с линией статического байпаса, которая в общем случае может быть подключена к другой линии электроснабжения, чем вход выпрямителя ИБП.

Посмотрим теперь, что произойдет с ИБП с двойным преобразованием энергии, если частота сети вдруг начнет отличаться от стандартной (50 Гц).

Если частота в линии байпаса находится в пределах допустимого, то частота инвертора аккуратно следует за ней. Частота и фаза инвертора равны частоте и фазе в линии байпаса. Следовательно ИБП в любой момент (при выходе из строя инвертора или его перегрузке) может переключиться на статический байпас, не испытывая импульсных нагрузок.

Если же частота в линии байпаса станет равной 48 Гц, то частота инвертора не может следовать за ней, чтобы не питать нагрузку напряжением с частотой, сильно отличающейся от номинальной.

Как мы уже знаем, ИБП, взаимодействующие с сетью, в этом случае переходят на режим работы от батареи, а после исчерпания заряда батареи отключаются.

ИБП с двойным преобразованием энергии отрабатывают эту ситуацию гораздо лучше. Блок управления просто разрешает инвертору ИБП прекратить синхронизацию с линией байпаса и перейти на режим независимой работы. Частота инвертора становится равной ровно 50 Гц и остается такой до тех пор, пока частота линии байпаса не вернется в пределы допустимого.

Во время независимой работы инвертора, переключение ИБП на статический байпас блокируется, поскольку при таком переключении возможны сильные фазовые и амплитудные искажения, которые могут нанести ущерб чувствительной нагрузке. Более того, переключение в отсутствие синхронизации опасно для самого ИБП.

Некоторые ИБП имеют возможность настройки пределов допустимых изменений частоты. Например они могут быть настроены на допустимые колебания частоты 0.5, 1 или 2 Герца в каждую сторону.

Казалось бы, чем уже диапазон допустимых колебаний частоты, тем лучше для чувствительной нагрузки. На самом деле улучшение качества стабилизации частоты происходит за счет общей надежности системы. Ведь если диапазон допустимых изменений частоты установлен меньше реального диапазона изменения частоты сети в месте установки ИБП, то ИБП большую часть времени работает без синхронизации инвертора с линией байпаса. Это снижает общую надежность системы, защищаемой с помощью ИБП, поскольку во время независимой работы инвертора невозможно переключение на статический байпас.

В случае если ИБП имеет возможность настройки диапазона допустимых изменений частоты, пользователь имеет возможность выбирать выгодный для себя компромисс. Он может установить очень узкий диапазон частот для чувствительной нагрузки, сознательно пойдя на некоторое снижение надежности системы, или расширить этот диапазон для получения максимальной надежности, если нагрузка не слишком чувствительна к изменениям частоты.

Выход из строя какой-либо из систем ИБП вещь, в общем-то, довольно маловероятная. Хорошие ИБП с двойным преобразованием имеют среднее время наработки на отказ до 10 лет. Но статический байпас имеет еще одну функцию, которая используется буквально при каждом включении сильно нагруженного ИБП.

Инвертор естественно имеет ограничение по допустимой нагрузке. При постоянной нагрузке этой границей является номинальная мощность ИБП. Кратковременно инвертор способен выдерживать большие токи. Обычно допускается перегрузка около 50-150 % на несколько миллисекунд и около 10-50 % на несколько секунд или десятков секунд.

Практически любому потребителю электроэнергии известно такое явление, как стартовый ток. Под этим понимается ток, возникающий при включении потребителя электроэнергии в отличие от тока на установившемся режиме работы.

Для компьютеров и других часто питаемых от ИБП устройств характерен довольно большой стартовый ток. При каждом включении компьютер потребляет в несколько раз больший ток, чем после запуска (как мы увидим далее, стартовый ток легко может превысить номинальный ток в 10 раз).

Таким образом при запуске потребителей, мощность которых составляет хотя бы 10 % номинальной мощности ИБП, возможна перегрузка инвертора. Если перегрузка возникла, ИБП для предохранения своего инвертора от перегрузки переключается на работу через байпас. Через несколько секунд ИБП снова переключается на работу от инвертора. Этот режим работы предохраняет инвертор от выхода из строя и увеличивает общую надежность компьютерной системы, защищенной с помощью ИБП с двойным преобразованием энергии.Другие элементы ИБП с двойным преобразованием

Сравним еще раз схемы ИБП с двойным преобразованием и взаимодействующего с сетью. У ИБП с двойным преобразованием отсуствуют (хотя и не у всех моделей) некоторые элементы: фильтры шумов и импульсов. В ИБП этого типа импульсы и шумы фильтруются в результате выпрямления напряжения переменного тока: на выходе выпрямителя имеются схемы подавления пульсаций напряжения, выполняющие роль фильтров.

В процессе второго преобразования энергии шумы и импульсы еще раз уменьшаются и нагрузка питается чистым синусоидальным напряжением.

Поэтому отсутствие в схеме фильтров можно считать своего рода фокусом: внутри ИБП есть элементы, выполняющие эти функции, но называющиеся по другому. Кроме того, в некоторых ИБП с двойным преобразованием энергии установлены варисторные шунты.

Батарея ИБП с двойным преобразованием не имеет никаких отличий от батарей ИБП других типов.

Все силовые элементы ИБП с двойным преобразованием энергии работают под нагрузкой все время, пока ИБП включен (в отличие, например, от инвертора и выпрямителя ИБП с переключением, которые простаивают, пока ИБП работает от сети). Поэтому все полупроводники и другие силовые элементы ИБП с двойным преобразованием рассчитаны на длительную работу по полной нагрузкой. Это позволяет, не внося значительных изменений в ИБП, подключать к нему дополнительные аккумуляторы для увеличения длительности работы от батареи.

Большинство ИБП с двойным преобразованием имеют такую возможность.Индикация и управление

Органы индикации и управления ИБП с двойным преобразованием не имеют принципиальных отличий от панелей управления других ИБП.

Стандартный набор включает клавиши включения и выключения прибора, индикаторы сети, заряда батарей и нагрузки (для некоторых моделей). Характеристики ИБП с двойным преобразованием энергии Мощность

ИБП с двойным преобразованием имеют наиболее широкий диапазон мощностей по сравнению с другими ИБП.

Схема ИБП с двойным преобразованием позволяет создавать устройства очень большой мощности. Обычно максимальная мощность единичного ИБП ограничивается величиной около 300-500 кВА. Но возможно наращивание мощности ИБП за счет параллельной работы нескольких модулей на одну нагрузку.

Начиная с мощности около 10 кВА ИБП обычно предназначены для работы с трехфазным входным напряжением. Потому все, что связано с ИБП средней и большой мощности, рассматривается в главе «Трехфазные ИБП». Коэффициент полезного действия

ИБП с двойным преобразованием энергии имеют не слишком высокий КПД, по сравнению с ИБП других типов. Тем не менее, их КПД довольно велик. Он составляет примерно 90% при полной или близкой к полной мощности. При уменьшении мощности КПД уменьшается.

На примерно 50 % мощности КПД может составлять около 70 %.

Исходя из КПД, можно оценить максимальное тепловыделение ИБП. Оно примерно равно 10 % от номинальной мощности ИБП. Тепловыделение ИБП должно учитываться при расчете теплового режима помещения, где установлены ИБП. Подробнее это рассмотрено в главе «Трехфазные ИБП», поскольку тепловой режим критичен именно для больших ИБП.

Приведенная выше величина КПД не учитывает использования части входной мощности для заряда батареи. Потому для того, чтобы даже примерно определить максимальный входной ток ИБП, величины КПД не достаточно. Нужно смотреть более подробные технические характеристики ИБП, а для точного расчета максимального входного тока, нужно рассчитывать эту величину, исходя их емкости батареи, установленной в ИБП. Время работы от батареи

ИБП небольшой мощности (до 1 кВА) имеют время работы от батареи при полной нагрузке примерно 5-15 минут. Но почти для всех ИБП большей мощности фирма производитель обычно предусматривает возможность наращивания емкости батареи по сравнению со стандартной.

Хорошая защита от шумов и наносекундных импульсов.

Очень хорошая защита от искажений формы кривой напряжения и микросекундных импульсов.

Возможность работы в сетях с нестабильной частотой.

Самая лучшая плавная стабилизация напряжения с высокой точностью.

Возможность наращивания батареи практически для всех моделей ИБП.

Как и для других ИБП, недостатки ИБП с двойным преобразованием вытекают из особенностей силовой схемы ИБП (и, к сожалению, вряд ли могут быть отделены от преимуществ).

Более высокая цена, по сравнению с другими типами ИБП (кроме феррорезонансного).

Повышенное тепловыделение, по сравнению с другими типами ИБП (кроме феррорезонансного)..

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *