если нет нуля а фаза есть что делать
Две фазы в розетке. Причины. Что делать?
21 Апр 2016г | Раздел: Электрика
Здравствуйте, уважаемые читатели сайта sesaga.ru. Иногда в электрической проводке возникает интересная неисправность, которая приводит неопытного электрика или простого любителя в затруднительное положение. Такой неисправностью является возникновение второй фазы в розетке, которая там оказывается на месте нуля, что заставляет сильно призадуматься.
На самом же деле на обоих гнездах розетки присутствует одна и та же фаза, так как в однофазной электрической сети переменное напряжение 220В формируется одним фазным и одним нулевым проводниками, и второй фазы там быть не может. Но именно понимание этого и вызывает некоторое недоумение, когда на месте штатного нуля обнаруживается фаза.
Если бы в розетке действительно оказалась вторая фаза, то напряжение между обеими фазами составило бы 380В и все включенные бытовые приборы пришлось бы нести в ремонтную мастерскую.
Немного теории.
Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу.
Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N).
При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены.
При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва.
Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя.
Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом.
Совет. Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать мультиметр.
А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго:
1. Обрыв нуля во входном щитке дома или квартиры;
2. Обрыв нуля на входе или внутри распределительной коробки;
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.
1. Обрыв нуля во входном щитке дома или квартиры.
Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе.
Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара, которое постепенно переходит в обрыв.
При отсутствии нуля все электрические приборы в доме работать не будут. Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания бытовой техники или нить накала лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине.
Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине.
2. Обрыв нуля на входе или внутри распределительной коробки.
При обрыве нулевой жилы перед распределительной коробкой или в самой коробке проблема с нулем и работой электрооборудования будет именно в том помещении дома или квартиры, в которое распределяет напряжение данная коробка. При этом в соседних помещениях все будет работать в штатном режиме.
На рисунке выше видно, что перед левой распределительной коробкой произошел разрыв нулевой жилы провода, и фаза через нить накала лампы (нагрузку) попадает на розеточный ноль.
При поиске такой неисправности вскрывается проблемная коробка и находится скрутка общего нуля (она самая толстая в коробке). Жилы скрутки отрезаются, заново разделываются и опять скручиваются вместе.
Совет. Если провод медный, то скрутку желательно пропаять.
Когда ноль обрывается перед распределительной коробкой, как показано на верхнем рисунке, для поиска обрыва часто приходится вскрывать в стене штробу с этим проводом, чтобы найти место повреждения.
При поиске такой неисправности сначала в коробке находят скрутку с общим нулем и раскручивают на отдельные жилы. Затем каждая нулевая жила вызванивается до розеток и до потолка. Жила, которая не прозвонится, и будет являться входящим проводом в коробку.
Далее этот провод продергивается и вскрывается штукатурка в стене для поиска места повреждения провода. Однако такая неисправность относится к разряду трудновыполнимых, потому как ковырять стену мало кто берется – проще проложить новую трассу.
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.
Может возникнуть ситуация, когда при сверлении отверстия, вкручивании самореза или забивании гвоздя в стену нарушается электрическая проводка. В довесок к этому, повреждение проводки сопровождается коротким замыканием, из-за которого провод повреждается полностью или частично. Лечится такая неисправность вскрытием места повреждения и восстановлением поврежденного участка провода.
Иногда при такой неисправности можно также наблюдать две фазы в розетке.
В момент замыкания происходит сварка фазной и нулевой жилы вместе, и поэтому фаза беспрепятственно попадает на нулевую жилу. Причем даже при выключенном из розеток электрооборудования и отключенных выключателей освещения фаза будет присутствовать на тех розетках и выключателях, на которые подается напряжение от этого провода.
Лечится неисправность восстановлением поврежденного участка проводки.
Если же остались вопросы, то в дополнение к статье посмотрите видеоролик, где также раскрыта тема обрыва нуля.
В этой статье мы рассмотрели только самые распространенные неисправности, возникающие в однофазной электрической сети при повреждении нулевой жилы провода. Теперь если у Вас в розетке появятся две фазы, Вы сможете легко определить и устранить подобную неисправность.
Удачи!
Обрыв нуля в трехфазной и однофазной сети
Лампочка при обрыве нуля может гореть ярко, но недолго!
Иногда обывателям приходится слышать эти страшные слова – “Обрыв нуля”. Для простого человека понятного мало, но связано это всегда с очень неприятными последствиями – поражение электрическим током, сгоревшая техника, и даже пожар в квартире.
В этой статье я подробно рассмотрю, что такое обрыв нуля, как он происходит, какие последствия от него могут быть. И конечно, будет рассмотрена защита от обрыва нуля в трехфазной и однофазной сети.
Для тех, кто не очень понимает, чем трехфазная сеть отличается от однофазной, очень рекомендую ознакомиться с этой статьёй.
Также, при изучении этой статьи важно знать о том, как формируются системы заземления.
Где бывает обрыв нуля
Принципиально важно, что обрыв нуля может быть в трехфазной, а может быть в однофазной сетях.
Там происходят совершенно разные процессы, подробно расскажу ниже. Если коротко, что при этом происходит:
При обрыве нуля в трехфазной сети появляется перекос фаз, что может привести к тому, что напряжение в квартирной розетке возрастёт до 380 В! Для человека, если правильно выполнено заземление, такая авария не опасна. А вот для наших электроприборов – последствия могут быть очень печальными! А также и для нашего жилища, поскольку может произойти пожар.
Местом обрыва нуля может быть этажный щиток, тогда в зоне риска находятся только квартиры на одной лестничной площадке. А может – вводное распределительное устройство (РУ) многоэтажного дома. Например, такое:
Вводное распределительное устройство (РУ) в подвале многоэтажного дома – в плохом состоянии
При обрыве нуля в однофазной сети последствия не такие печальные – напряжение в розетке будет нулевым, и электроприборы просто не будут работать. Однако вся электросеть (а при неправильно выполненном заземлении, и корпуса электроприборов!) будет находиться под потенциалом 220 В!
Последствия обрыва нуля в трехфазной сети
Расскажу случаи из жизни.
Болт нуля. Ржавый, периодически не контачит. Если его менять без отключения, 100% в подъезде погорит техника!
Отгорание нуля от нулевой шины
Нулевой провод отгорел от второго болта. Видно, как он отвалился под натяжением. Прежде, чем отвалиться, он ПОЧТИ переплавил изоляцию фазных проводов (вертикальные, красный и белый).
Сервер ещё не включали, возможно, интеллектуальный ущерб будет больше…
На месте этой трагедии я установил трехфазное реле напряжения Барьер, читайте статью по ссылке.
Как видно, такие проблемы происходят из-за неправильных действий “электриков” либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.
В этой статье подробно расскажу, почему такое бывает и как с этим бороться.
Формирование однофазной и трехфазной сетей и обрыв нуля
Как известно, мощные потребители (в данном случае – многоквартирные дома) питаются от трехфазной сети, в которой есть три фазы и ноль. Про эту систему я уже писал подробно в статье про отличия трехфазного питания от однофазного, вот картинка оттуда:
Напряжения в трёхфазной системе
Рассмотрим этот вопрос ещё раз, только с другой стороны.
Вот как выглядит упрощенно схема подвода питания в этажный щиток:
Система питания, без обрыва нуля. Резисторами обозначены условно три квартиры.
Фазные провода L1, L2, L3, на которых присутствует напряжение 220В по отношению к нейтральному проводу N, обозначены красным цветом, поскольку они представляют опасность. Заземление РЕ показано внизу, его провод соединяется в распределительном устройстве на вводе в здание с нейтралью.
Подробнее – ещё раз призываю ознакомиться с моей статьёй про системы заземления, ссылка в начале.
К чему приводит отгорание нуля в трехфазной сети
Что изменится, если произойдёт обрыв нулевого провода N ДО места соединения нулевых проводов в одной точке? Будет обрыв нуля в трехфазной сети:
Обрыв нуля в трехфазной сети
Если смотреть по схеме, правее места обрыва напряжение теперь будет не нулевым, а “гулять” в произвольных пределах.
Что будет, если ноль отсоединить (случайно или намеренно)? Какие напряжения будут подаваться потребителям вместо 220В? Это как повезёт.
Картинка в другом виде, возможно, так будет легче понять:
Перекос фаз в результате обрыва нуля.
Потребители условно показаны в виде сопротивлений R1, R2, R3. Напряжения, указанные в предыдущем рисунке, как
220B, обозначены как
0…380B. Объясняю, почему.
Итак, что будет, если ноль пропадёт (крест в нижнем правом углу)? В идеальном случае, когда электрическое сопротивление всех потребителей одинаково, ничего вообще не изменится. То есть, перекоса фаз не будет. Так происходит в случае включения трехфазных потребителей, например, электродвигателей или мощных калориферов.
Начинается перекос фаз. А насколько он зверский, зависит от реальной ситуации.
У соседей, которые дома, чайник перестанет греть, стиралка и сплит потухнут, напряжение уменьшится до 50…100В. Поскольку “сопротивление” этих соседей гораздо ниже, чем тех у тех, которых нет дома. И вот, эти люди спокойно работают на работе, а в это время в пустой квартире у них дымятся телевизор и китайская зарядка. Потому, что напряжение в розетках подскочило до 300…350В.
Это реальные факты и цифры, такое иногда бывает, состояние электрических щитков на лестничных площадках часто бывает аварийным. Даже, когда в доме проводится капитальный ремонт, щитки не трогают, поскольку менять электрику гораздо сложнее, чем покрасить дом и вставить новые окна.
Расследовать такое возгорание надо не с вызова экстрасенсов (мало ли, полтергейст со спичками играется;) ), а с вызова электрика.
Обрыв нуля в однофазной сети
Тут картина будет следующей:
Обрыв нуля в однофазной сети
Для нагрузки, которая работает на других фазах, вообще ничего не изменится. Это всё равно, как если в своей квартире выключить вводные автоматы – соседям будет по барабану.
Но если обрыв произошел, например, в щитке, то вся квартира, в том числе и оборванный конец нулевого провода, окажется под напряжением 220В!
Обрыв (отгорание) бывает вот из-за таких ржавых болтов, как вверху этого фото:
Плохой ноль. Пропадание нуля в квартире
Повторюсь – если заземление сделано правильно, либо его вообще нет – эта авария ничем не опасна. Ну и, конечно, не нужно трогать провода, не дожидаясь электрика – все они под смертельным потенциалом!
Хорошо, кто виноват – мы поняли. Что делать?
Как защититься от обрыва нуля?
Самая лучшая защита от обрыва нуля в трехфазной сети – это реле напряжения, о котором я писал на блоге не раз. Вот две мои основные статьи – Про реле напряжения Барьер и реле напряжения ЕвроАвтоматика ФиФ.
Из-за своей основной функции это реле называют также Реле обрыва нуля.
Другой вариант – применение стабилизатора напряжения. В нем обязательно должна быть защита от пониженного и повышенного (до 380В) входного напряжения. А при невозможности стабилизировать напряжение он должен отключать квартиру, но оставаться исправным.
Лучший вариант для защиты от обрыва нуля и вообще при нестабильном напряжении – использовать реле напряжения, а вслед за ним – стабилизатор.
Видео
Подробно и наглядно про обрыв нуля, перекос фаз, и чем это опасно – в видео:
Как вариант дополнительной защиты при обрыве нуля может помочь УЗО (или диф.автомат). Только не так всё просто, подробности – в видео:
На сегодня всё, подключайтесь к обсуждению, задавайте вопросы в комментариях!
Фаза или ноль на выключатель? Что будет если сделать неправильно
Итак, делая электропроводку, вы дошли до соединения проводов в распределительных коробках. С розеточной группой всё понятно. Провода в распределительной коробке соединяем все параллельно — жёлто-зеленые с жёлто-зелеными, синие с синими, белые с белыми. То есть, землю соединяем с землёй, ноль с нолём, фазу с фазой. Будет выглядеть это так:
Я приведу две схемы соединения проводов в световой распредкоробке. Это схемы соединения для одноклавишного выключателя и для двухклавишного выключателя.
Выключатель должен разрывать фазу!
На схемах видно, что в обоих случаях на выключателе разрывается фаза, а ноль идёт на лампочку или светильник напрямую. И это правильно! Ибо, как говорил Остап Бендер, ибо…..
А что произойдёт, если сделать наоборот?
В принципе, ничего особенного, всё будет работать. Но. Самый большой минус такого подключения это безопасность. Так как безопасность эксплуатации электроустановок имеет большое значение, то подключение выключателя оговорено в ПУЭ (Правила устройства электроустановок).
«В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного».
(7 издание ПУЭ, 6.6.28)
Это правило для подключения автоматического выключателя. И говорит оно о том, что нельзя разрывать нулевой провод не разрывая и фазный.
Так что произойдёт если выключатель будет стоять в нулевом проводнике?
При включённом выключателе всё будет работать так как к лапочке будет приходить и ноль (через выключатель) и фаза (напрямую).
А вот при выключенном выключателе на лампочке ноль исчезнет, а фаза останется. Причем на обоих проводах, если это лампа накаливания.
Чем это чревато?
Если светильник исправен и работает, то ничем не чревато. А вот если вы захотите поменять перегоревшую лампу в люстре или светильнике подключённом неправильно, то при случайном прикосновении к контактам в цоколе вас может ударить током. А может и не ударить. Всё зависит от того как хорошо заземлены ваши ноги. Но лучше не экспериментировать!
Что ещё может произойти?
Если люстра или светильник не новые, может потрескаться изоляция проводов и (не дай Бог) они замкнут на корпус люстры или светильника. На металлическом корпусе люстры может оказаться фаза. Простое прикосновение к корпусу может быть чревато поражением электрическим током. Всё зависит от особенности организма и качества заземления ваших ног. Исход может быть непредсказуем.
Ну а почему не сработала защита?
Да потому, что ноля то на люстре у нас нет — выключатель выключен, ноль разорван и не подается на светильник. Если же выключатель включён и ноль подается на светильник, он может и не быть на корпусе люстры. На корпусе люстры может быть только фаза.
Автомат же дифференциальной защиты в цепи освещения можно не ставить согласно ПУЭ.
Ещё одна неприятная проблема при неправильном подсоединении выключателя это мерцание светодиодных ламп и светильников при постоянной фазе на них. Не факт, что это будет происходить, но у светильников не очень высокого качества это может случиться.
Как определить фаза или ноль идёт на выключатель?
Определить ноль или фаза идёт на выключатель можно двумя способами: на выключателе или на самом светильнике.
Выключатель должен быть в отключённом состоянии.
В выключателе на одном проводе должна быть фаза (индикатор будет светиться), а на люстре индикатор светиться не будет. Конечно же на выключателе проверять удобнее так как он находится внизу, да и снять его будет проще, чем открутить люстру или светильник с на потолке. Как снять выключатель рассказывать вам не буду.
Но что же делать, если вы узнали что выключатель у вас подключён неправильно.
В старых квартирах обычно схема электропроводки однолинейная. А это значит, что вся квартира «висит» на одной линии. Скорее всего у вас все выключатели подключены данным образом.
Многие советуют переподключить провода в распределительной коробке. Но, как вы понимаете, для этого нужно её найти, снять с этого места обои, раскрутить скрутки. Но во многих старых квартирах проводка алюминиевая и лишний раз раскрутить, скрутить провод чревато поломкой их.
Можно, просто напросто, перекинуть провода на автоматических выключателях, которые находятся в щитке. И тогда фаза станет нулём, а ноль фазой и на выключатель пойдёт фазный провод.
На картинке показана схема где на нулевом и фазном проводе стоят отдельные однополюсные выключатели. Так делали раньше. Сейчас же используют один двухполюсный автоматический выключатель.
Если же вы определили что какой выключатель подключён неправильно, а остальные в порядке, это значит, что у электрика в том момент, когда он собирал коробку было «озарение». Вот тогда то кроме как переделать распредкоробку данного выключателя ничего не поможет.
Находим распределительную коробку. Обычно она находится над выключателем на расстоянии 15-20 сантиметров от потолка. Вскрываем её, предварительно выключив автоматы в распредщитке. Освобождаем скрутки от изоляции. Включаем автоматы и находим фазный провод индикатором. Выключатель должен быть выключен.
Обычно в световых коробках бывает четыре кабеля:
Цвет проводов не имеет значения потому, что провода могут быть разного цвета.
Определяем какой кабель идёт на лампочку, а какой на выключатель. Обычно кабель на выключатель уходит вертикально вниз, а на лампочку (светильник) вверх. Обесточиваем коробку отключением автоматического выключателя.
Переделываем коробку следующим образом:
Как соединять провода в распредкоробке решите по месту в зависимости от состояния и материала проводов. Изолируем места соединения проводов.
Цвета проводов в распределительной коробке указаны в соответствие с современной расцветкой проводов в кабеле. Вместо коричневого провода чаще всего используется белый.
Почему «ноль» бьется током?
Иногда и на нулевом контакте в розетке может возникнуть напряжение. Что с этим делать? Решаем проблему «бьющегося» нуля.
Появление фазы на нуле — довольно частое явление. Ничего хорошего в этом нет: такого быть не должно. В чем может быть проблема, что проверить в своей квартире или щитке? Как правило, тут ничего сложного.
1 Обрыв нуля
Первая причина возникновения напряжения на нуле заключается в его обрыве. Если на пути от электрощитка к розетке произошел обрыв нуля, тогда при включенной нагрузке ноль в розетке может биться током. На рисунке ниже мы схематически показали, как из-за обрыва нулевого провода появляются две фазы в розетке (точнее та же фаза).
К примеру, мы нечаянно дрелью задели нулевой проводник, тем самым оборвав его на пути к розетке. Если в это время подключен какой-то потребитель (например, лампочка), через него та же фаза придет на ноль в розетку, и при проверке индикаторной отверткой мы увидим на нуле напряжение.
Если такое произошло, нужно выключить автомат и проверить целостность нуля на всем промежутке от щита (или счетчика) до розетки, в которой нулевой контакт стал биться током.
2 Замыкание фазы на нуль
Вторая причина заключается в замыкании фазы на рабочий ноль в розетке. Произойти это может, если мы сверлили в стену или забивали в нее гвоздь, нечаянно оборвали ноль и закоротили ее на фазу (см рис.).
В этом случае по нулю пойдет напряжение даже в том случае, если нет ни одного подключенного потребителя. Это будет та же фаза, что приходит в розетку.
Вот, собственно, основные причины «бьющегося» нуля в розетке.
3 Наведенное напряжение
Такая ситуация может возникнуть на воздушной линии электропередач. Если по одним и тем же опорам идут линии в 10 кВ и 0,4 кВ, то в сырую погоду на нуле линии 0,4 кВ может возникнуть напряжение. Оно будет невелико, но при этом достаточно ощутимо.
Автору когда-то доводилось ремонтировать линию 0,4 кВ в сырую погоду без отключения линии 10 кВ. Расстояние между проводами было примерно 1,2 м. При этом и нулевой, и фазный провод линии 0,4 кВ ощутимо бились током, так что приходилось ремонтные работы выполнять в диэлектрических перчатках.
Интересное из мира электрики: