как доказать что четырехугольник вписан в окружность
Четырехугольники, вписанные в окружность. Теорема Птолемея
Вписанные четырёхугольники и их свойства
Теорема 1 доказана.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Фигура | Рисунок | Свойство | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник |
Окружность, описанная около параллелограмма | ||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около ромба | ||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | ||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | ||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||||||||||||||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник | ||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около ромба | ||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | ||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | ||||||||||||||||||||||||||||||||||||||||||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||||||||||||||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник | ||||||||||||||||||||||||||||||||||||||||||
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты: где a, b, c, d – длины сторон четырёхугольника, Теорема ПтолемеяДокажем, что справедливо равенство: Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4). откуда вытекает равенство:
Четырехугольник, вписанный в окружностьРассмотрим, что такое четырехугольник, вписанный в окружность и около какого четырехугольника можно описать окружность. Четырехугольник называется вписанным в окружность, если все вершины четырехугольника лежат на окружности. Четырехугольник ABCD — вписанный в окружность. Все его вершины — точки A, B, C, D — лежат на окружности. 1) Четырехугольник можно вписать в окружность, если сумма его противолежащих углов равна 180º. 2) Если сумма противолежащих углов четырехугольника равна 180º, то этот четырехугольник можно вписать в окружность.
вписанный в окружность. 1) Из всех параллелограммов вписать в окружность можно только прямоугольник (в том числе, в квадрат). Центр описанной около прямоугольника окружности — точка пересечения его диагоналей. Радиус описанной около прямоугольника окружности равен половине его диагонали. Через стороны прямоугольника радиус описанной окружности равен Если стороны прямоугольника обозначить как a и b, то 2) Из всех трапеций вписать в окружность можно только равнобедренную трапецию. Радиус описанной около трапеции окружности можно найти как радиус окружности, описанной около одного из треугольников — вершин трапеции: Вписанный четырехугольник и его свойства (ЕГЭ 2022)Мы видели, что вокруг всякого треугольника можно описать окружность. Вот так: Вопрос: а можно ли получить вписанный четырехугольник? Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника? Сейчас мы это выясним! Вписанный четырехугольник — коротко о главном
\( \displaystyle \angle B+\angle D=180<>^\circ \).
Вписанный четырехугольник — определения и теоремыВот оказывается, что это неправда! НЕ ВСЕГДА четырехугольник можно вписать в окружность. Есть очень важное условие:
На нашем рисунке: \( \displaystyle \alpha +\beta =180<>^\circ \) Посмотри, углы \( \displaystyle \alpha \) и \( \displaystyle \beta \) лежат друг напротив друга, значит, они противоположные. А что же тогда с углами \( \displaystyle \varphi \) и \( \displaystyle \psi \)? Они вроде бы тоже противоположные? Можно ли вместо углов \( \displaystyle \alpha \) и \( \displaystyle \beta \) взять углы \( \displaystyle \varphi \) и \( \displaystyle \psi \)? Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет \( \displaystyle 180<>^\circ \). Оставшиеся два угла тогда сами собой тоже дадут в сумме \( \displaystyle 180<>^\circ \). Не веришь? Давай убедимся. Пусть \( \displaystyle \alpha +\beta =180<>^\circ \). Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, \( \displaystyle 360<>^\circ \). То есть \( \displaystyle \alpha +\beta +\varphi +\psi =360<>^\circ \) — всегда! \( \displaystyle 180<>^\circ \) Так что запомни крепко-накрепко:
Доказательство смотри чуть дальше. А пока давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна \( \displaystyle 180<>^\circ \). Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма? Вписанный параллелограммПопробуем сперва «методом научного тыка»: Вот как-то не получается. Теперь применим знание: Предположим, что нам как-то удалось посадить на параллелограмм \( \displaystyle ABCD\) окружность. Тогда непременно должно быть: \( \displaystyle \alpha +\beta =180<>^\circ \), то есть \( \displaystyle \angle B+\angle D=180<>^\circ \). А теперь вспомним о свойствах параллелограмма: у всякого параллелограмма противоположные углы равны. То есть \( \displaystyle \angle B = \angle D\). У нас получилось, что \( \displaystyle \left\< \begin А что же углы \( \displaystyle A\) и \( \displaystyle C\)? Ну, то же самое конечно. \( \displaystyle ABCD\) – вписанный → \( \displaystyle \angle A+\angle C=180<>^\circ \) → \( \displaystyle \angle A=90<>^\circ \) \( \displaystyle ABCD\) — параллелограмм→ \( \displaystyle \angle A=\angle C\) → \( \displaystyle \angle C=90<>^\circ \) Как доказать что четырехугольник вписан в окружность
Вписанные четырёхугольники и их свойстваТеорема 1 доказана. Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично. Теорема 2 доказана. Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около ромба | ||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | ||||||||||||||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | ||||||||||||||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник | ||||||||||||||||||||||||||||||||||||||||||
(1) |
Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?
Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?
Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».
«Описанная окружность» мы видели, что вокруг всякого треугольника можно описать окружность. То есть, для всякого треугольника найдётся такая окружность, что все три вершины треугольника «сидят» на ней. Вот так:
Вопрос: а можно ли то же самое сказать о четырехугольнике? Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника?
Вот оказывается, что это НЕПРАВДА! НЕ ВСЕГДА четырехугольник можно вписать в окружность. Есть очень важное условие:
Так что запомни крепко-накрепко:
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна
и наоборот:
Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма? Попробуем сперва «методом тыка».
Вот как-то не получается.
Теперь применим знание:
А теперь вспомним о свойствах параллелограмма:
у всякого параллелограмма противоположные углы равны.
У нас получилось, что
И ещё при этом – центр окружности совпадает с точкой пересечения диагоналей этого прямоугольника. Это, так сказать, в качестве бонуса прилагается.
Ну, вот значит, выяснили, что параллелограмм, вписанный в окружность – прямоугольник.
А теперь поговорим о трапеции. Что будет, если трапецию вписать в окружность? А оказывается, будет равнобедренная трапеция. Почему?
Значит, имеем: → → трапеция равнобокая.
Даже проще чем с прямоугольником, правда? Но запомнить нужно твёрдо – пригодиться: Трапеция, вписанная в окружность – равнобедренная.
Давай ещё раз перечислим самые главные утверждения, касающиеся четырехугольника, вписанного в окружность:
Вписанный четырехугольник. Средний уровень
Давай попробуем понять, почему так? Другими словами, мы сейчас докажем эту теорему. Но прежде чем доказывать, нужно понять, как устроено само утверждение. Ты заметил в утверждении слова «тогда и только тогда»? Такие слова означают, что вредные математики впихнули два утверждения в одно.
Прямо как у Алисы: «думаю, что говорю» и «говорю, что думаю».
А теперь разбираемся, отчего же верно и 1, и 2?
Получаем, что если – вписанный, то
Теперь и «наоборот», то есть 2.
Мы пока не знаем, можем ли описать вокруг него окружность. Но мы точно знаем, что вокруг треугольника мы гарантированно окружность описать можем. Так и сделаем это.
Если точка не «села» на окружность, то она неминуемо оказалась или снаружи или внутри.
Рассмотрим оба случая.
А внутри? Проделаем похожие действия. Пусть точка внутри.
То есть точка не может оказаться ни снаружи, ни внутри окружности – значит, она на окружности!
Доказали всю-всю теорему!
Теперь посмотрим, какие же хорошие следствия даёт эта теорема.
Следствие 1
Параллелограмм, вписанный в окружность, может быть только прямоугольником.
Но, кроме того, есть ещё дополнительный приятный факт: центр окружности, описанной около прямоугольника, совпадает с точкой пересечения диагоналей.
Давай поймём почему. Надеюсь, ты отлично помнишь, что угол, опирающийся на диаметр – прямой.
а значит, – центр. Вот и всё.
Следствие 2
Трапеция, вписанная в окружность – равнобедренная.
Всё ли мы обсудили? Не совсем. На самом деле есть ещё один, «секретный» способ, как узнавать вписанный четырехугольник. Мы этот способ сформулируем не очень строго (но понятно), а докажем только в последнем уровне теории.
Несмотря на совершенное отсутствие строгости в нашей формулировке, она верна, и более того, всегда принимается проверяющими ЕГЭ. Ты должен писать примерно так:
« — вписанный» — и всё будет отлично!
Не забывай этот важный признак – запомни картинку, и, возможно, она тебе вовремя бросится в глаза при решении задачки.
Вписанный четырехугольник. Краткое описание и основные формулы
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна
P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ 🙂
Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.
Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!
Теперь самое главное.
Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.
Проблема в том, что этого может не хватить…
Для успешной сдачи ОГЭ или ЕГЭ, для перехода в 10-й класс или поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.
Я не буду тебя ни в чем убеждать, просто скажу одну вещь…
Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.
Но и это — не главное.
Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю.
Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?
НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.
На экзамене у тебя не будут спрашивать теорию.
Тебе нужно будет решать задачи на время.
И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.
Это как в спорте — нужно много раз повторить, чтобы выиграть наверняка.
Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!
Я рекомендую использовать для этих целей наш учебник «YouClever» (который ты сейчас читаешь) и решебник и программу подготовки «100gia».
Условия их приобретения изложены здесь. Кликните по этой ссылке, приобретите доступ к YouClever и 100gia и начните готовиться прямо сейчас!
И в заключение.
Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.
“Понял” и “Умею решать” — это совершенно разные навыки. Тебе нужны оба.
Найди задачи и решай!
Комментарии
спасибо очень интересно почему авторы учебников не пишут это
Спасибо, Ольга. Автори интересных учебников пишут. Просто их не так много)
Хотелось бы поблагодарить составителей статьи: подача материала очень интересна и необычна, и сам он легко усваивается!
Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?
Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?
Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».
«Описанная окружность» мы видели, что вокруг всякого треугольника можно описать окружность. То есть, для всякого треугольника найдётся такая окружность, что все три вершины треугольника «сидят» на ней. Вот так:
Вопрос: а можно ли то же самое сказать о четырехугольнике? Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника?
Вот оказывается, что это НЕПРАВДА! НЕ ВСЕГДА четырехугольник можно вписать в окружность. Есть очень важное условие:
Так что запомни крепко-накрепко:
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна
и наоборот:
Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма? Попробуем сперва «методом тыка».
Вот как-то не получается.
Теперь применим знание:
А теперь вспомним о свойствах параллелограмма:
у всякого параллелограмма противоположные углы равны.
У нас получилось, что
И ещё при этом – центр окружности совпадает с точкой пересечения диагоналей этого прямоугольника. Это, так сказать, в качестве бонуса прилагается.
Ну, вот значит, выяснили, что параллелограмм, вписанный в окружность – прямоугольник.
А теперь поговорим о трапеции. Что будет, если трапецию вписать в окружность? А оказывается, будет равнобедренная трапеция. Почему?
Значит, имеем: → → трапеция равнобокая.
Даже проще чем с прямоугольником, правда? Но запомнить нужно твёрдо – пригодиться: Трапеция, вписанная в окружность – равнобедренная.
Давай ещё раз перечислим самые главные утверждения, касающиеся четырехугольника, вписанного в окружность:
Вписанный четырехугольник. Средний уровень
Давай попробуем понять, почему так? Другими словами, мы сейчас докажем эту теорему. Но прежде чем доказывать, нужно понять, как устроено само утверждение. Ты заметил в утверждении слова «тогда и только тогда»? Такие слова означают, что вредные математики впихнули два утверждения в одно.
Прямо как у Алисы: «думаю, что говорю» и «говорю, что думаю».
А теперь разбираемся, отчего же верно и 1, и 2?
Получаем, что если – вписанный, то
Теперь и «наоборот», то есть 2.
Мы пока не знаем, можем ли описать вокруг него окружность. Но мы точно знаем, что вокруг треугольника мы гарантированно окружность описать можем. Так и сделаем это.
Если точка не «села» на окружность, то она неминуемо оказалась или снаружи или внутри.
Рассмотрим оба случая.
А внутри? Проделаем похожие действия. Пусть точка внутри.
То есть точка не может оказаться ни снаружи, ни внутри окружности – значит, она на окружности!
Доказали всю-всю теорему!
Теперь посмотрим, какие же хорошие следствия даёт эта теорема.
Следствие 1
Параллелограмм, вписанный в окружность, может быть только прямоугольником.
Но, кроме того, есть ещё дополнительный приятный факт: центр окружности, описанной около прямоугольника, совпадает с точкой пересечения диагоналей.
Давай поймём почему. Надеюсь, ты отлично помнишь, что угол, опирающийся на диаметр – прямой.
а значит, – центр. Вот и всё.
Следствие 2
Трапеция, вписанная в окружность – равнобедренная.
Всё ли мы обсудили? Не совсем. На самом деле есть ещё один, «секретный» способ, как узнавать вписанный четырехугольник. Мы этот способ сформулируем не очень строго (но понятно), а докажем только в последнем уровне теории.
Несмотря на совершенное отсутствие строгости в нашей формулировке, она верна, и более того, всегда принимается проверяющими ЕГЭ. Ты должен писать примерно так:
« — вписанный» — и всё будет отлично!
Не забывай этот важный признак – запомни картинку, и, возможно, она тебе вовремя бросится в глаза при решении задачки.
Вписанный четырехугольник. Краткое описание и основные формулы
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна
P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ 🙂
Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.
Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!
Теперь самое главное.
Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.
Проблема в том, что этого может не хватить…
Для успешной сдачи ОГЭ или ЕГЭ, для перехода в 10-й класс или поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.
Я не буду тебя ни в чем убеждать, просто скажу одну вещь…
Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.
Но и это — не главное.
Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю.
Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?
НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.
На экзамене у тебя не будут спрашивать теорию.
Тебе нужно будет решать задачи на время.
И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.
Это как в спорте — нужно много раз повторить, чтобы выиграть наверняка.
Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!
Я рекомендую использовать для этих целей наш учебник «YouClever» (который ты сейчас читаешь) и решебник и программу подготовки «100gia».
Условия их приобретения изложены здесь. Кликните по этой ссылке, приобретите доступ к YouClever и 100gia и начните готовиться прямо сейчас!
И в заключение.
Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.
“Понял” и “Умею решать” — это совершенно разные навыки. Тебе нужны оба.
Найди задачи и решай!
Комментарии
спасибо очень интересно почему авторы учебников не пишут это
Спасибо, Ольга. Автори интересных учебников пишут. Просто их не так много)
Хотелось бы поблагодарить составителей статьи: подача материала очень интересна и необычна, и сам он легко усваивается!
- как доказать что человек часть живой природы
- как доказать что четырехугольник вписанный