как доказать что молекулы движутся
Движение молекул в физике в газах, жидкостях и твёрдых телах с примерами
Содержание:
Движение молекул:
Почему запах духов распространяется по всей комнате? Могут ли «срастись» два кусочка металла? От чего зависит скорость движения атомов и молекул? На эти и другие вопросы вы сможете ответить, прочитав этот параграф.
Тепловое движение
В соответствии с современными представлениями, атомы и молекулы, из которых состоит вещество, находятся в беспрерывном хаотическом движении. Такое движение называется тепловым.
Тепловое движение невозможно увидеть невооруженным глазом, ведь размеры молекул очень малы.
Однако существует много физических явлений, объяснить которые можно только опираясь на тот факт, что молекулы постоянно двигаются.
Определение диффузии
Бесспорным доказательством движения молекул служит физическое явление, хорошо известное вам из курса природоведения,— диффузия (от лат. diffusio — распространение, растекание).
Напомним, что диффузией называют взаимное проникновение соприкасающихся веществ друг в друга, происходящее в результате теплового (хаотического) движения молекул (атомов).
Диффузия в газах и жидкостях
Вспомните, что происходит, если где-то в комнате разлить ароматное вещество, например духи,— его запах в скором времени будет ощущаться повсюду. Это значит, что молекулы ароматного вещества, двигаясь, попадают в промежутки между молекулами воздуха, которым заполнена комната, т. е. наблюдается диффузия. Именно в результате диффузии в газах мы ощущаем запах свежеиспеченного хлеба из булочной или запах прогретой солнцем травы.
Диффузию можно наблюдать и в жидкостях. Проведем такой опыт. В прозрачный сосуд с чистой водой с помощью воронки нальем раствор медного купороса так, чтобы жидкости не смешались (рис. 2.15). Сначала мы наблюдаем резкую границу между водой и раствором медного купороса. Оставив сосуд в покое на несколько дней, мы увидим, что вся жидкость в сосуде приобрела бирюзовый цвет (рис. 2.16). Причем перемешивание жидкостей произошло без вмешательства извне. Схематически процесс диффузии изображен на рис. 2.17. Многочисленные опыты свидетельствуют, что диффузия в жидкостях протекает значительно медленнее, чем в газах. Еще медленнее происходит диффузия в твердых телах. Почему? Ответ на этот вопрос следует искать в особенностях расположения молекул газов, жидкостей и твердых тел.
Как связаны скорость движения молекул и температура
Приготовим два сосуда, как показано на рис. 2.15. Один из сосудов поставим в теплое место, второй — в холодное. Посмотрев через некоторое время на сосуды, мы убедимся, что в теплом растворе диффузия произошла намного быстрее.
В случае повышения температуры скорость диффузии в газах также увеличивается.
Зависимость скорости диффузии от температуры особенно заметна для твердых тел. Так, английский металлург Вильям Роберт Остин провел следующий опыт. Он наплавил тонкий диск золота на свинцовый цилиндр (рис. 2.18, а) и на несколько дней поместил этот цилиндр в печь, где поддерживалась температура около 400 °С. Оказалось, что золото продиф-фундировало через весь цилиндр (рис. 2.18, б); тем временем при комнатной температуре диффузия практически не наблюдалась.
Таким образом, мы выяснили, что чем выше температура вещества, тем быстрее происходит диффузия, т. е. молекулы быстрее двигаются.
Довольно сложные эксперименты показывают, что при любой температуре в веществе есть молекулы, двигающиеся довольно медленно, и молекулы, скорость которых высока. Если количество молекул вещества, имеющих высокую скорость, увеличивается, т. е. увеличивается средняя скорость молекул, то это значит, что температура вещества также увеличивается.
Диффузия в природа и ее применение в технике
Явление диффузии очень распространено в природе. Благодаря диффузии углекислый газ попадает в листву растений; кислород из воздуха — на дно водохранилищ; питательные вещества впитываются в кишечнике; кислород из легких попадает в кровь, а из крови — в ткани и т. д.
Диффузию широко применяют в технике. Одним из примеров является диффузное сваривание металлов. Куски металлов крепко прижимают друг к другу, нагревают до высокой
температуры, но ниже температуры плавления. В месте соединения происходит диффузия, и куски металлов как будто срастаются.
Атомы и молекулы, из которых состоит вещество, находятся в беспрерывном хаотическом движении. Такое движение называется тепловым, поскольку увеличение температуры вещества соответствует увеличению средней скорости движения его молекул (атомов).
Одним из доказательств движения частиц вещества является физическое явление, которое называется диффузией. Диффузия — взаимное проникновение соприкасающихся веществ друг в друга, происходящее в результате теплового хаотического движения молекул (атомов).
Движение и взаимодействие молекул
Что такое броуновское движение
Броуновское движение — хаотическое движение видимых в микроскоп малых макрочастиц, взвешенных в жидкости или газе, которое происходит под действием ударов молекул.
Это явление названо в честь шотландского ботаника Роберта Броуна (1773–1858), который первым наблюдал его в 1827 г. Рассматривая в микроскоп взвешенные в воде частички пыльцы, Броун заметил, что они непрерывно движутся, постоянно изменяя скорость.
Причина броуновского движения — хаотическое движение молекул жидкости или газа. Двигаясь, молекулы среды непрерывно бомбардируют взвешенную в ней макрочастицу (рис. 27.1). Если суммарная сила ударов с одной стороны случайно окажется больше, чем с другой, то макрочастица может начать движение; потом другие толчки изменят ее скорость.
Теория броуновского движения, созданная А. Эйнштейном и польским физиком M. Смолуховским в 1905–1906 гг. и экспериментально подтвержденная французским физиком Ж. Перреном (рис. 27.2), окончательно закрепила победу атомистики.
Что такое диффузия и где ее применяют
Непрерывное хаотическое движение молекул происходит внутри любого макроскопического тела. В курсе физики 7 класса вы изучали диффузию — еще одно явление, обусловленное таким движением (от лат. diffusio — распространение, растекание).
Диффузия — процесс взаимного проникновения молекул одного вещества между молекулами другого, происходящий вследствие теплового движения молекул.
Если в стакан с водой налить подкрашенный сахарный сироп, спустя некоторое время вода в стакане окрасится и станет сладкой (рис. 27.3, а).
Рис. 27.3. Диффузия в жидкостях и твердых телах. Вследствие теплового хаотического движения молекул сироп смешался с водой в течение суток (а), две отшлифованные и прижатые друг к другу пластины свинца и золота «срослись» на 1 мм в течение 5 лет (б)
Диффузия в жидкости происходит довольно медленно, а в твердых телах она медленнее в сотни и тысячи раз (рис. 27.3). В газах диффузия протекает гораздо быстрее, чем в жидкостях, но все равно: если бы не было конвекции, запах духов распространялся бы в комнате часами. Отметим, что в любых средах скорость диффузии увеличивается с повышением температуры и давления.
Диффузные процессы очень важны для получения и обработки некоторых материалов. Диффузия в твердых телах обеспечивает соединение металлов при сварке, пайке, никелировании. С помощью диффузии поверхностный слой металлических изделий насыщают углеродом, обеспечивая их прочность (рис. 27.4).
Рис. 27.4. Цементация — процесс насыщения поверхностного слоя стали углеродом. если изготовить деталь из низкоуглеродистой стали, а затем поместить ее в высокотемпературную смесь, содержащую углерод, то благодаря диффузии поверхностный слой стали обогатится углеродом. Полученная деталь одновременно будет твердой (снаружи — крепкий чугун) и не будет разрушаться при ударных нагрузках (внутри — упругая сталь)
Разновидностью диффузии является осмос (от греч. osmos — толчок, давление) — процесс односторонней диффузии сквозь полупроницаемую перегородку (мембрану) молекул растворителя в сторону большей концентрации растворенного вещества. Например, если острым ножом отрезать дольку лимона, то сок практически не выделится; если посыпать дольку сахаром, то сок появится. Выделяясь из лимона, сок как бы стремится разбавить концентрированный раствор сахара, образовавшийся на срезе.
В природе благодаря осмосу питательные вещества и вода проникают из почвы в корни растений, из пищеварительного тракта — в организмы живых существ и непосредственно в клетки; кислород из легочных альвеол поступает в кровь и т. п. В промышленности осмос используют для очистки воды, производства напитков, получения некоторых полимеров.
Как быстро движутся молекулы
Молекулы в газах движутся очень быстро — со скоростью пули (см. таблицу), но далеко «улететь» не могут, поскольку ежесекундно испытывают более миллиарда столкновений с другими молекулами. Поэтому траектории движения молекул представляют собой сложные ломаные линии, подобные траектории движения броуновской частицы.
Обратите внимание! В веществе всегда есть молекулы, движущиеся медленно, и молекулы, скорость движения которых огромна. В результате столкновений скорости молекул непрерывно изменяются. Описать движение даже одной молекулы невозможно, да и не нужно. Важно знать, к какому результату приводит движение всей совокупности молекул данного объекта.
Как была измерена скорость движения молекул
Впервые скорость движения молекул измерил немецкий физик Отто Штерн (1888–1969) в 1920 г. Для опыта Штерн изготовил устройство (см. рис. 1), состоящее из двух жестко связанных пустых цилиндров, надетых на общую ось; стенка внутреннего цилиндра имела щель. Вдоль оси была натянута металлическая нить, покрытая слоем серебра. Воздух из цилиндров был откачан. Когда по нитке пропускали ток, серебро испарялось и внутренний цилиндр заполнялся атомами Аргентума, часть которых проходила сквозь щель и оседала на внутренней стенке внешнего цилиндра. В результате напротив щели образовывалась тонкая полоска серебра (А на рис. 2).
При вращении цилиндров полоска серебра становилась размытой и образовывалась не напротив щели, а на определенном расстоянии s от полоски А (полоска A’). Ведь пока атомы Аргентума проходили расстояние l (см. рис. 2), цилиндры поворачивались. Чем быстрее двигались атомы, тем ближе к полоске А они оседали.
Зная радиусы цилиндров, угловую скорость ω их вращения и измерив расстояние s, Штерн определил скорости v движения атомов Аргентума. Действительно, время движения атомов от щели до внешнего цилиндра равна . За это время точка на поверхности внешнего цилиндра проходит расстояние s, поэтому .
Таким образом, . Скорость движения атомов, измеренная Штерном, совпала со скоростью, рассчитанной теоретически.
Как и почему взаимодействуют молекулы
Убедиться в том, что молекулы притягиваются друг к другу, достаточно просто. Попробуйте, например, разорвать стальную проволоку или разломить кирпич — это будет сложно, хотя предметы состоят из отдельных частиц. Тот факт, что твердые тела и жидкости не распадаются на отдельные молекулы, превращаясь в газ, тоже говорит о том, что между молекулами существуют силы притяжения. Вместе с тем молекулы отталкиваются друг от друга. В этом легко убедиться, попробовав сжать ту же проволоку или тот же кирпич, — вряд ли вам это удастся.
МКТ утверждает: между молекулами одновременно существуют как силы притяжения, так и силы отталкивания. Основная причина наличия этих сил — электрическое притяжение и отталкивание заряженных частиц, образующих атом: положительно заряженное ядро одного атома притягивается к отрицательно заряженному электронному облаку другого атома; вместе с тем и ядра атомов отталкиваются друг от друга, и электронные облака. Если расстояние r между молекулами меньше размеров d самих молекул (r d) начинают преобладать силы притяжения и молекулы притягиваются друг к другу. Таким образом, на расстоянии r=d молекулы находятся в состоянии устойчивого равновесия: при отклонениях молекулы от этого положения межмолекулярные силы стремятся вернуть ее в состояние равновесия.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Тепловое движение — доказательство явления, виды и признаки
Молекулы или атомы веществ не находятся в состоянии покоя, а непрерывно движутся. Тепловое движение — это беспорядочное коллективное перемещение частиц вещества. Обычно рассматривается это явление для атомов или молекул, но оно характерно для любых частиц (электронов, ионов и других).
Температура и скорость
Скорость теплового движения молекул зависит от температуры вещества. Чем выше температура, тем они движутся быстрее. Именно температура является мерой того, насколько интенсивно движутся молекулы или атомы.
Для повышения температуры нужно передать телу некоторое количество теплоты. Эта теплота идет на увеличение внутренней энергии тела. В нее вносят вклад кинетическая и потенциальная энергия молекул или атомов, составляющих вещество. Чем больше их энергия, тем быстрее они движутся.
Большинство молекул перемещается со скоростью, близкой к средней, и лишь небольшое их число имеет скорость намного меньшую или намного большую. Относительное число молекул, движущихся с определенной скоростью, можно найти с помощью функции распределения Максвелла по скоростям. Формулу это функции открыл Джеймс Клерк Максвелл. Из распределения Максвелла можно найти:
Также скорость передвижения частиц зависит от их массы. Чем масса больше, тем медленнее они движутся.
Доказательства явления
Для доклада на тему «Что называется тепловым движением» важно рассмотреть доказательства. Это броуновское движение и диффузия. Броуновское движение — это хаотическое перемещение взвешенных в жидкости твердых частиц. Броун впервые наблюдал такое поведение частичек пыльцы в воде.
Если посмотреть в микроскоп на взвешенную в воде пыльцу, будет видно, что частичка беспорядочно движется. Почему так происходит? Поскольку масса частички пыльцы сравнима с массой молекулы, эти удары заставляют ее двигаться скачками, так как в каждый момент времени случайным образом количество ударов с одной стороны оказывается больше, чем с другой.
Иногда понятие теплового движения в физике путают с понятием броуновского, однако это ошибка. Тепловым движением называют перемещение частиц самого вещества, тогда как под броуновским — частиц, взвешенных в жидкости или газе.
Именно тепловым движением объясняется явление диффузии. Она может происходить в разных классах веществ, даже в твердых телах, но там она идет значительно медленнее, чем в газах или жидкостях.
При диффузии частицы одного вещества проникают между частицами другого. При этом они движутся от области с большей концентрацией в область с меньшей, и концентрация сама по себе с течением времени выравнивается.
Примеры диффузии — это растворение сахара, соли и других веществ в воде, распространение запахов. При этом с ростом температуры растет и скорость диффузии, так как передвижение молекул становится интенсивнее.
Тепловое движение в различных веществах
Частицы любого вещества совершают тепловое движение. Но в зависимости от того, какое состояние рассматривается, этот процесс несколько отличается:
Эти различия связаны с отличием в строении разных агрегатных состояний.
В газе частицы мало взаимодействуют друг с другом и расположены неупорядоченно. Они имеют разные скорости и двигаются в различных направлениях.
В жидкостях существует только ближний порядок, то есть близко расположенные частицы взаимодействуют друг с другом сильнее, чем относительно удаленные. Они могут колебаться около положения равновесия, образовывать слои и перемещаться из одного в другой.
В твердых телах существует дальний порядок, атомы или молекулы обычно образуют кристаллическую решетку и находятся в ее узлах. Такая структура не дает им свободно перемещаться.
Тепловым движением называется непрерывное хаотическое перемещение частиц вещества. Оно характерно для любых веществ, а интенсивность его зависит от температуры. Доказать явление можно, рассматривая броуновское движение и диффузию.
Конспект урока «Молекулы. Движение молекул»
Выбранный для просмотра документ 8 класс_Урок №2_Молекулы. Движение молекул.doc
Молекулы. Движение молекул.
Цель урока: ввести понятие атома и молекулы, рассмотреть их движение в веществе; продемонстрировать опыт Штерна.
Повторение. Проверка домашнего задания.
Какие представления о строении вещества имели древнегреческие мыслители Демокрит и Эпикур?
Какие представления о строении вещества отражены в поэме Лукреция Кара «О природе вещей»?
Почему представления древнегреческих учёных о строении вещества долгое время оставались гипотезой и не могли превратиться в теорию?
Какие явления и опыты, описанные в параграфе, доказывают, что тела состоят из мельчайших частиц? Приведите свои примеры.
Какие опыты доказывают, что между частицами, из которых состоят тела, существуют промежутки?
Изучение нового материала.
Из опытов, которые были рассмотрены в предыдущем параграфе, следует, что вещество можно разделить на отдельные частицы. Возникает вопрос: до каких пор можно производить это деление? Оказывается, существует определённый предел деления вещества. Иными словами, существует самая маленькая частица, которая сохраняет свойства вещества.
Наименьшую частицу вещества, которая сохраняет его химические свойства, называют молекулой.
Слова «химические свойства» не являются новыми; они известны вам из курсов естествознания и химии. Рассмотрим, что значит «сохраняет химические свойства», на примере мела. Мел — это вещество, представляющее собой соединение кальция Са, углерода С и кислорода О (СаСО3). Это соединение имеет определённые химические свойства, в частности, оно может вступать в реакцию с каким-либо другим веществом. При этом и кусок мела, и молекула этого химического соединения будут вести себя в реакции одинаково. В этом смысле и говорят, что молекула сохраняет химические свойства данного вещества.
Слово «молекула» происходит от латинского слова «молекуле», что значит «маленькая масса».
Таким образом, можно сказать, что вещество состоит из молекул: мел состоит из молекул соединения кальция, сахар — из молекул сахара, вода — из молекул воды и т. д.
О размере молекул можно судить по следующим примерам. Если уложить в ряд сто миллионов молекул воды, то получится цепочка длиной всего около 2 см. Молекула водорода во столько раз меньше яблока среднего размера, во сколько раз яблоко меньше земного шара.
Поскольку молекулы такие маленькие, то в теле их содержится очень много. Так, в 1 см 3 воздуха содержится 27∙10 18 молекул.
Для того чтобы получить представление о числе молекул в единице объёма и соответственно об их размерах, предположим, что имеется стакан воды и молекулы воды, находящейся в нём, определённым образом помечены. Выльем эту воду в Чёрное море. Будем считать также, что вода в море равномерно перемешалась. Зачерпнём из моря в любом месте стакан воды и увидим, что в нём окажутся сотни меченых молекул воды.
Возникает вопрос: можно ли молекулу разделить на отдельные частицы? Оказывается, можно! Молекула воды, например, состоит из водорода и кислорода. Однако водород и кислород уже другие вещества, и они обладают свойствами, отличными от свойств воды. Разделить молекулу воды на такие вещества можно в процессе химической реакции.
Частицы, из которых состоят молекулы веществ, называют атомами.
Атом — наименьшая частица вещества, не делящаяся при химических реакциях.
Так, молекула воды состоит из двух атомов водорода и одного атома кислорода; молекула поваренной соли — из одного атома натрия и одного атома хлора. Молекула сахара, который мы обычно употребляем в пищу, более сложная: она состоит из 12 атомов углерода, 22 атомов водорода и 11 атомов кислорода, а молекула белка состоит из тысячи атомов.
Существуют вещества, молекулы которых содержат однородные атомы. Например, молекула водорода состоит из двух атомов водорода, молекула кислорода — из двух атомов кислорода.
Таким образом, можно сказать, что вещества состоят из молекул и атомов.
Определённое вещество, независимо от того, как оно получено, состоит из одних и тех же молекул и атомов. Например, молекула воды, полученной при таянии льда, или из сока ягод, или налитой из-под крана, содержит два атома водорода и один атом кислорода. Молекула кислорода, извлечённая из атмосферного воздуха или полученная в ходе какой-либо химической реакции, состоит из двух атомов кислорода.
Движение молекул. Диффузия
Вы уже знаете, что все вещества состоят из молекул и атомов, между которыми есть промежутки. Возникает вопрос: покоятся молекулы вещества или они движутся? Чтобы ответить на него, обратимся к явлениям, хорошо вам знакомым.
Если бы молекулы были неподвижны, то бельё не высыхало бы и запахи не распространялись бы по комнате. Остаётся предположить, что молекулы движутся. Сложность экспериментальной проверки этого предположения заключается в том, что молекулы малы и само их движение наблюдать невозможно. Однако можно изучить явления, которые являются следствием движения молекул. Рассмотрим одно из них.
В 1827 г. английский ботаник Роберт Броун (1773— 1858) изучал с помощью микроскопа поведение частичек цветочной пыльцы, взвешенных в воде. Он заметил, что частички совершают беспорядочное движение; они как бы дрожат в воде. Такое движение называют броуновским.
На рисунке 7 показана в увеличенном масштабе траектория движения частицы.
Причину движения частиц пыльцы долго не могли объяснить. Броун предположил вначале, что частицы движутся, потому что они живые. Движение частиц пытались объяснить неодинаковым нагреванием разных частей сосуда, происходящими химическими реакциями и т. д.
Лишь значительно позже поняли истинную причину броуновского движения. Эта причина — движение молекул воды. Молекулы воды, в которой находится частица пыльцы, движутся и ударяются о неё. При этом с разных сторон о частицу ударяется неодинаковое число молекул, что и приводит к её перемещению.
Пусть в момент времени t 1 под действием ударов молекул воды частица переместилась из точки А в точку В (см. рис. 7). В следующий момент времени большее число молекул ударяется о частицу с другой стороны, и направление её движения изменяется, она перемещается из точки В в точку С. Таким образом, движение частицы пыльцы является следствием движения молекул воды, в которой пыльца находится.
Подобное явление можно наблюдать, если поместить в воду частицы краски или сажи. Броуновское движение частиц можно наблюдать и в газах.
Выясним, каков характер движения молекул.
По траектории движения частицы пыльцы (см. рис. 7) видно, что направление её движения всё время меняется. Поскольку движение частицы — следствие движения молекул воды, то можно сделать вывод, что молекулы движутся беспорядочно (хаотически). Иными словами, нельзя выделить какое-то определённое направление, в котором движутся все молекулы.
Движение молекул никогда не прекращается. Можно сказать, что оно непрерывно. Итак,
молекулы находятся в непрерывном беспорядочном (хаотическом) движении.
Положение тела, совершающего равномерное механическое движение, можно определить, если известны его начальное положение, скорость и время движения. Иначе обстоит дело в случае движения молекул.
Вы уже знаете, что тела состоят из большого числа молекул. Поскольку движение молекул беспорядочно, то нельзя точно сказать, сколько ударов будет испытывать та или иная молекула со стороны других. Поэтому говорят, что положение молекулы и её скорость в каждый момент времени случайны. Однако это не означает, что движение молекул не подчиняется никаким законам. В частности, хотя скорости молекул в любой момент времени различны, у большинства из них значения скорости близки к некоторому определённому значению. Обычно, говоря о скорости движения молекул, имеют в виду среднюю скорость ( v c р).
Скорости движения молекул были определены экспериментально немецким учёным Отто Штерном (1888—1969) в 1920 г. Сущность опыта Штерна можно объяснить, используя модель, изображённую на рисунке 8. На подставке 1 установлен диск 2; на нём — полая изогнутая трубка 3. По краю диска укреплены спички 4. Если диск покоится, то шарик, пущенный по трубке, собьёт спичку, расположенную напротив её изогнутого конца (точка А).При вращении диска за время движения шарика точка А повернётся на некоторый угол и шарик собьёт спичку, расположенную в точке В. Чем больше скорость шарика, тем ближе к точке А он будет сбивать спички.
Установка в опыте Штерна состояла из двух жёстко связанных цилиндров 1 и 2, имеющих общую ось (рис. 9). В стенке внутреннего цилиндра была проделана щель 3, а вдоль оси цилиндра натянута платиновая нить 4, покрытая серебром. Нить нагревали, с неё испарялись атомы серебра, которые пролетали через щель и осаждались на внутренней поверхности внешнего цилиндра.
Пока цилиндры были неподвижны, атомы осаждались напротив щели. Осадок имел форму полоски (рис. 10, а). Когда цилиндры приводили во вращение, то атомы серебра осаждались не напротив щели, а на некотором расстоянии от полоски атомов, образовавшейся в случае неподвижных цилиндров. При этом в зависимости от скорости движения атомов они оседали на разных расстояниях от полоски. Поэтому полоска не имела чётких границ, как бы размывалась. При этом центральная её часть была толще, чем края (рис. 10, б). Это означает, что скорость большей части атомов близка к некоторому определённому значению.
Если известны путь, пройденный молекулой (атомом), и время, за которое он пройден, то можно определить скорость молекулы. Из опыта Штерна найдено, что скорости большинства атомов серебра при температуре 1200 °С лежат в интервале от 500 до 625 м/с.
Актуализация знаний. Закрепление материала.
Каков предел деления вещества?
Что называют молекулой?
Каковы размеры молекул?