как доказать что параллельные прямые не пересекаются

Новое в блогах

как доказать что параллельные прямые не пересекаются. b. как доказать что параллельные прямые не пересекаются фото. как доказать что параллельные прямые не пересекаются-b. картинка как доказать что параллельные прямые не пересекаются. картинка b.

Пересекаются ли параллельные или Что говорил Лобачевский?

как доказать что параллельные прямые не пересекаются. 740 61347. как доказать что параллельные прямые не пересекаются фото. как доказать что параллельные прямые не пересекаются-740 61347. картинка как доказать что параллельные прямые не пересекаются. картинка 740 61347.

Недавно в посте на околонаучные темы один из комментаторов завел разговор о геометрии Лобачевского (что он ее не понимает) и даже вроде попросил объяснить. Я тогда ограничилась утверждением, что понимаю. Объяснять эту теорию в ограниченных рамках комментария и одним текстом (без рисунков) показалось мне невозможным.

Однако, подумав, я все же решила попробовать дать небольшой популярный экскурс в эту теорию.

Немного предыстории. Геометрия со времен Евклида стала аксиоматической теорией, в которой большинство утверждений доказывалось на основе нескольких постулатов (аксиом). Считалось, что эти аксиомы «очевидны», т.е. отражают свойства реального (физического) пространства.

Одна из этих аксиом вызывала у ученых подозрение: а нельзя ли ее вывести из остальных постулатов? Современная формулировка этой аксиомы такова:

«Через точку, не лежащую на заданной прямой, можно провести не более одной прямой, параллельной ей». То, что одну-то прямую можно провести, является не аксиомой, а теоремой.

При этом «параллельной» называется прямая, не пересекающая данную. Итак, суть аксиомы в том, что такая прямая – одна!

Лобачевский, как и многие до него, решил доказать, что это утверждение можно вывести из других аксиом. Для этого он, как это часто делается в математике, выбрал метод «от противного», т.е. предположил, что прямых, не пересекающих данную, больше одной и попытался вывести из этого противоречие с другими фактами. Но чем дальше он развивал теорию, тем больше убеждался, что никакого противоречия не предвидится! Т.е. получалось, что теория с «неправильным» постулатом тоже имеет право на существование!

Конечно, в первое время его выкладки не признавали, смеялись над ним. Именно поэтому великий Гаусс (который пришел к тем же выводам) не рискнул опубликовать свои результаты. Но со временем пришлось признать, что ЧИСТО ЛОГИЧЕСКИ теория Лобачевского ничем не хуже евклидовой.

Один из остроумных способов убедиться в этом – придумать такие «прямые», которые ведут себя как «прямые» Лобачевского. И математики нашли такой пример, и не один.

Пожалуй, самой простой является модель Пуанкаре. Вы можете сами построить ее нехитрыми приборами.

Начертите не листке бумаги прямую. Возьмите циркуль и, ставя его иглу на эту прямую, нарисуйте полуокружности, находящиеся с одной стороны от прямой. Теперь сотрите прямую (и с ней – концевые точки полуокружностей). Так вот, эти полуокружности «без концов» и будут вести себя, как прямые в геометрии Лобачевского!

Действительно, выделим одну полуокружность и точку вне нее. Есть достаточно много полуокружностей, которые не пересекаются с исходной и все проходят через данную точку. Среди них выделяются две: они касаются нашей исходной «прямой» в концевых точках (которые мы, как Вы помните, стерли) Т.е. реального пересечения не происходит. Эти две окружности задают «границы», между которыми находятся все прямые, не пересекающие данную. Их – бесконечное количество.

Можно заметить, что треугольники в этой модели не такие, как на плоскости (евклидовой): сумма их углов меньше 180 градусов! Впрочем, чем меньше треугольник, тем больше сумма его углов. В «малом», на небольших расстояниях, геометрия Лобачевского практически совпадает с геометрией Евклида. Поэтому, вообще говоря, мы не сможем «экспериментально» отличить одну от другой, если окажется, что доступные нам (космические) расстояния– малы для этой цели.

Впрочем, в наше время ни физики, ни, тем более, математики, не пытаются воспринимать геометрию Лобачевского как модель «реального», физического пространства. Математики поняли, что все, что они могут сказать: если верны такие-то аксиомы, то верны и такие-то теоремы. Ну, а что такое «множества», «точки», «прямые», «углы», «расстояния», и т.п. – этого мы не знаем! Прямо как у Станислава Лема: «Сепульки – это объекты для сепулькирования»

«Говорят, Бертран Рассел определил математику как науку, в которой мы никогда не знаем, о чем говорим, и насколько правильно то, что мы говорим. Известно, что математика широко применяется во многих других областях науки. [ … ] Таким образом, одна из главных функций математического доказательства – создание надежной основы для проникновения в суть вещей.»

Источник

Почему параллельные прямые пересекаются?

как доказать что параллельные прямые не пересекаются. %D0%9F%D0%BE%D1%87%D0%B5%D0%BC%D1%83 %D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%BB%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5 %D0%BF%D1%80%D1%8F%D0%BC%D1%8B%D0%B5 %D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D0%BA%D0%B0%D1%8E%D1%82%D1%81%D1%8F. как доказать что параллельные прямые не пересекаются фото. как доказать что параллельные прямые не пересекаются-%D0%9F%D0%BE%D1%87%D0%B5%D0%BC%D1%83 %D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%BB%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5 %D0%BF%D1%80%D1%8F%D0%BC%D1%8B%D0%B5 %D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D0%BA%D0%B0%D1%8E%D1%82%D1%81%D1%8F. картинка как доказать что параллельные прямые не пересекаются. картинка %D0%9F%D0%BE%D1%87%D0%B5%D0%BC%D1%83 %D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%BB%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5 %D0%BF%D1%80%D1%8F%D0%BC%D1%8B%D0%B5 %D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D0%BA%D0%B0%D1%8E%D1%82%D1%81%D1%8F.

В евклидовой геометрии параллельные прямые, лежащие в одной плоскости, не пересекаются. Все это верно по отношению к плоскости, которая имеет бесконечную кривизну поверхности. Но в реалиях мы имеем дело с плоскостями, где это положение не соблюдается. За примерами далеко ходить не нужно. Достаточно посмотреть на нашу планету, которая имеет форму шара. Вот на таких поверхностях эта аксиома не работает.

Получается, что Евклид выводил свою аксиому для абсолютно плоской поверхности. В качестве примера можно взять чистый лист бумаги, нанести на него прямую линию и поставить в произвольном месте точку, которая с ней не будет совпадать. Через эту точку можно провести всего одну прямую линию, которая будет параллельна искомой. Эти две линии не будут пересекаться. Но если поверхность имеет отрицательную кривизну, то через эту точку можно провести несколько таких параллельных прямых.

Лобачевский говорит, что данная аксиома верна для абсолютно плоской поверхности, с нулевой кривизной. На самом деле мы имеем дело с самыми разными плоскостями, которые могут иметь форму сферы, воронки, седла и т д. То есть, в данном случае мы говорим о поверхностях, с так называемой «отрицательной кривизной». Для них Лобачевский создал свою теорию, согласно которой, параллельные прямые вполне могут пересекаться в трехмерном пространстве.

Долгое время по этому поводу не утихали споры между учеными. Они просто не понимали, на чем базируется утверждение Лобачевского, которое опровергает пятый постулат Евклида. Но время шло вперед, и сегодня мы точно знаем, что живем в пространстве с «отрицательной кривизной», в котором параллельные прямые вполне могут иметь общую точку. Именно на этом утверждении построена физика Вселенной, а также теория относительности.

Источник

Почему параллельные прямые не пересекаются?

как доказать что параллельные прямые не пересекаются. %D0%9F%D0%BE%D1%87%D0%B5%D0%BC%D1%83 %D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%BB%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5 %D0%BF%D1%80%D1%8F%D0%BC%D1%8B%D0%B5 %D0%BD%D0%B5 %D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D0%BA%D0%B0%D1%8E%D1%82%D1%81%D1%8F. как доказать что параллельные прямые не пересекаются фото. как доказать что параллельные прямые не пересекаются-%D0%9F%D0%BE%D1%87%D0%B5%D0%BC%D1%83 %D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%BB%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5 %D0%BF%D1%80%D1%8F%D0%BC%D1%8B%D0%B5 %D0%BD%D0%B5 %D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D0%BA%D0%B0%D1%8E%D1%82%D1%81%D1%8F. картинка как доказать что параллельные прямые не пересекаются. картинка %D0%9F%D0%BE%D1%87%D0%B5%D0%BC%D1%83 %D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%BB%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5 %D0%BF%D1%80%D1%8F%D0%BC%D1%8B%D0%B5 %D0%BD%D0%B5 %D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D0%BA%D0%B0%D1%8E%D1%82%D1%81%D1%8F.

На первый взгляд этот вопрос может показаться довольно глупым. Ну как могут пересекаться параллельные прямые? Хотя, если обратиться к разным видам геометрии, то можно заметить следующую особенность Параллельные прямые существуют лишь в евклидовой и Лобачевского – Бони геометриях. В геометрии Римана их вообще нет. Там все прямые пересекаются. Есть еще геометрия, которая имеет дело с непостоянной кривизны пространством, но на ней мы останавливаться не будем. В данном случае нас интересует, евклидова геометрия, которую, как раз, и изучают в школе.

И так, согласно евклидовой геометрии через точку на плоскости можно провести всего одну параллельную прямую, которая не будет пересекаться с искомой. Этот факт здесь является аксиомой, и не требует доказательств. Данная аксиома гласит, что в евклидовой геометрии параллельные прямые не пересекаются!

И все-таки несмотря на то, что это аксиома, давайте попробуем разобраться в сути данного вопроса. Все дело в том, что в евклидовой геометрии используется плоскость, с радиусом кривизны, равной бесконечности. Геометрия Лобачевского базируется на несколько ином утверждении, что не все плоскости имеют бесконечный радиус кривизны. В качестве примера можно привести нашу планету, поверхность которой имеет сферическую форму.

Получается, что под параллельными прямыми, Евклид подразумевал две прямые линии, которые находятся в одной плоскости, и при этом не имеют общих точек. Это утверждение, в свою очередь, породило ряд других. Если эти две прямые пересечь другой плоскостью, то они будут считаться параллельными в том случае, если образуемые при этом углы будут равными. При таком раскладе они никогда не пересекутся. Именно таким образом можно доказать и пятый постулат Евклида. То есть, через точку, которая не лежит на данной прямой, можно провести всего одну, параллельную ей линию.

Источник

Пять мифов о геометрии Лобачевского

Миф первый. Геометрия Лобачевского не имеет ничего общего с Евклидовой.

На самом деле геометрия Лобачевского не слишком сильно отличается от привычной нам Евклидовой. Дело в том, что из пяти постулатов Евклида четыре первых Лобачевский оставил без изменения. То есть он согласен с Евклидом в том, что между двумя любыми точками можно провести прямую, что ее всегда можно продолжить до бесконечности, что из любого центра можно провести окружность с любым радиусом, и что все прямые углы равны между собой. Не согласился Лобачевский только с пятым, наиболее сомнительным с его точки зрения постулатом Евклида. Звучит его формулировка чрезвычайно мудрено, но если переводить ее на понятный простому человеку язык, то получается, что, по мнению Евклида, две непараллельные прямые обязательно пересекутся. Лобачевский сумел доказать ложность этого посыла.

Миф второй. В теории Лобачевского параллельные прямые пересекаются

Это не так. На самом деле пятый постулат Лобачевского звучит так: «На плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную». Иными словами, для одной прямой можно провести как минимум две прямые через одну точку, которые не будут ее пересекать. То есть в этом постулате Лобачевского речи о параллельных прямых вообще не идет! Говорится лишь о существовании нескольких непересекающихся прямых на одной плоскости. Таким образом, предположение о пересечении параллельных прямых родилось из-за банального незнания сути теории великого российского математика.

Миф четвертый. Геометрия Лобачевского не применима в реальной жизни

Миф пятый. Лобачевский первым создал неевклидову геометрию

Это не совсем так. Параллельно с ним и независимо от него к подобным выводам пришли венгерский математик Янош Бойяи и знаменитый немецкий ученый Карл Фридрих Гаусс. Однако труды Яноша не были замечены широкой публикой, а Карл Гаусс и вовсе предпочел не издаваться. Поэтому именно наш ученый считается первопроходцем в этой теории. Однако существует несколько парадоксальная точка зрения, что первым неевклидову геометрию придумал сам Евклид. Дело в том, что он самокритично считал свой пятый постулат не очевидным, поэтому большую часть из своих теорем он доказал, не прибегая к нему.

Источник

А «параллельные» прямые пересекаются в проективной геометрии

Наверняка вы когда–нибудь слышали, что в геометрии Лобачевского параллельные прямые пересекаются. Конечно же, это не так. И даже наоборот.

Из школьного курса геометрии мы знаем, что [далее менторским тоном] «через точку, не лежащую на прямой, можно провести прямую, параллельную данной, и только одну».

Это утверждение – наиболее популярное перефразирование пятого постулата Евклида, который в своё время подложил здоровенную свинью своим последователям. Дело в том, что в его «Началах» первые четыре постулата сформулированы очень просто и очевидно. Вот они:

В пятом же постулате Евклид решил потроллить математиков, и вместо того, чтобы написать что–нибудь столь же простое, например, «Прямоугольники существуют» (и баста!), он начал запутывать: «Если прямая, пересекающая две прямые, образует внутренние односторонние углы… бла–бла–бла…»

И все подумали: что–то он здесь темнит, не может быть аксиома такой сложной. Не распознав подвох, математики в течение 2 тысяч лет пытались избавиться от этого постулата и доказать его через другие постулаты и аксиомы. Сначала древние греки, потом арабы, потом европейцы. И каждый думал, что он успешно доказал этот постулат, но потом выяснялось, что его доказательство базируется на каком–нибудь очевидном, но не доказанном утверждении, равнозначном самому постулату. Таких утверждений набралось огромное множество. Вот ещё некоторые из них:

Последний пункт и играет ключевую роль в путанице с геометрией Лобачевского. Но об этом чуть позже.

Наконец, наиболее продвинутые из математиков стали пытаться применить доказательство от противного[Евклида] – то есть, предположить, что пятый постулат не верен, и вывести из этого какое–нибудь противоречие. Первым был итальянец Саккери (первая половина XVIII в.), который очень досадовал, что никак не может найти это противоречие. В конце концов, он сделал ошибку в вычислениях, получил противоречие и радостно вздохнул.

Мало–помалу математики стали что–то подозревать. И уже начались попытки отказаться от пятого постулата не в целях найти противоречие, а просто посмотреть, что же получится. Первых успехов добился Ламберт, который во второй половине XVIII в. построил непротиворечивую геометрию на сфере, в которой сумма углов треугольника всегда больше 180° и все прямые пересекаются. Однако в сферической геометрии нарушается не только пятый постулат, но и как минимум первые три. Кстати, четвёртый всё–таки был доказан и исключен из постулатов.

Ламберт также исследовал геометрию, в которой сумма углов треугольника всегда меньше 180°, не нашёл в ней противоречий, но не смог представить себе этакую мнимую сферу. Поэтому он не стал развивать тему, ограничившись заявлением, что доказать пятый постулат невозможно.

Дальше над этим работали Швейкарт и Гаусс. Гаусс отлично всё понимал, но понимал также и то, что втирать подобное почтенному научному сообществу – себе дороже. Заминусуют, потом вообще ничего не сможешь постить. Поэтому они оба тихо молчали себе в трубочку.

Первым, кто во всеуслышание заявил о неевклидовой геометрии, был Лобачевский. Сначала в докладе в 1826 году, затем в публикации 1829 года. Естественно на него посыпались все шишки, и он чуть было не лишился поста ректора Казанского университета. Он был не понят и осмеян, как в России, так и за рубежом. Но продолжал настаивать и отстаивать, и продвинулся в исследовании новой геометрии дальше всех. И с тех пор она носит его имя.

Почти как в песне поётся:
One deserves the credit, one deserves the blame
And Nikolai Ivanovich Lobachevsky is his name

Независимо от Лобачевского, но на три года позже него, публикует работу о неевклидовой геометрии венгерский математик Бойяи, которая также остаётся незамеченной.

Гаусс высоко оценивал работу Лобачевского, но только в частной переписке. Он даже пытался учить русский язык, чтобы почитать его русскоязычные публикации. В 1860–х годах (уже после смерти и Гаусса, и Лобачевского) переписка Гаусса становится достоянием общественности, и его восторженные отзывы о Лобачевском привлекают внимание к русскому учёному и его идеям. В общем, справедливость восторжествовала, но как всегда посмертно.

Итак, в геометрии Лобачевского через одну точку можно провести как минимум две прямые, параллельные данной, а вообще бесконечно много. Казалось бы, раз параллельные прямые проходят через одну точку, то они пересекаются. Да, они пересекаются, но фокус в том, что они не параллельны друг другу, хоть обе параллельны третьей прямой.

Ну и кроме этого, как вы, наверное, догадываетесь, сумма углов треугольника всегда меньше 180°, площадь треугольника ограничена константой, отношение длины окружности к диаметру растёт с увеличением окружности и т.д. Всё в таком духе. Да и теорема Пифагора не работает.

Как же представить такую поверхность, на которой работает геометрия Лобачевского? А вот она – на КДПВ, с очень сексуальным треугольничком на ней. Это так называемая гиперболическая плоскость. Если сфера – повсюду выпуклая поверхность, то гиперболическая плоскость – повсюду вогнутая, как какая–нибудь воронка или седло, только бесконечная. Как у сферы есть радиус (кривизны), так и у плоскости Лобачевского есть некий показатель кривизны. Только у сферы эта кривизна положительна, а у плоскости Лобачевского – отрицательна.

На очень маленьком масштабе, либо при увеличении показателя кривизны, геометрия Лобачевского приближается к евклидовой. Так что, вполне может оказаться, что мы живём в пространстве Лобачевского с достаточно большим показателем кривизны, поэтому не замечаем этого в наших масштабах. В частности, из теории относительности следует, что при равномерном распределении массы во вселенной, наше пространство вполне может иметь геометрию Лобачевского. Если это действительно окажется так, то Лобачевского можно назвать Эйнштейном математики.

А позавчера 228 лет со дня рождения Николая Ивановича Лобачевского. С чем вас и поздравляю!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *