как люди поняли что внутри земли ядро
Строение Земли: как ученые заглянули внутрь планеты
Ты наверняка знаешь, что наша планета состоит из нескольких слоев: сверху находится земная кора, ниже лежит мантия, а в центре располагается ядро, которое делится на внешнее и внутреннее. Но каким образом ученые это выяснили? Ведь ни мантию, ни тем более ядро Земли никто никогда не видел. Может быть, геологи исследовали недра, просверлив в Земле гигантский шурф? Увы, самая глубокая скважина, когда-либо пробуренная людьми, – Кольская сверхглубокая – уходит вниз лишь на двенадцать с небольшим километров. Если представить нашу Землю в виде яблока, то этой скважиной мы бы даже не проткнули его кожуру!
ДВА СИГНАЛА ОТ ДВУХ ПОРОД
В 1909 году хорватский сейсмолог Андрия Мохоровичич с помощью разработанных им приборов-сейсмографов зарегистрировал небольшое землетрясение, произошедшее и 39 км 01 3aipe6a, где эти приборы были установлены. Казалось бы, сейсмографы должны были просто зафиксировать каждый толчок произошедшего землетрясения. Однако на приборах почему-то были видны записи не одного, а как будто двух землетрясений, имевших разную силу и произошедших в разное время. Присмотревшись внимательнее к показаниям прибора, Мохоровичич понял, что часть колебаний Земли достигла сейсмографов напрямую, а часть отразилась от пород, лежащих ниже и отличающихся от верхних своими свойствами. Границу между этими породами впоследствии назвали поверхностью Мохоровичича. А дальнейшие наблюдения с помощью сейсмических приборов, установленных в разных местах, показали, что она пролегает на глубине от 500 метров (в некоторых местах под океанами) до 70 километров (под крупнейшими горными массивами на континентах).
Прошло немного времени, и ученые установили сейсмографы по всему земному шару. Теперь, когда происходило землетрясение, приборы по всей планете регистрировали идущие от него колебания. Причем регистрировали они два типа сейсмических волн: продольные – это фактически звуковые колебания, передающиеся в горных породах, и поперечные, характеризующиеся смещением грунта из стороны в сторону. Вскоре немецкий ученый Бено Гутенберг заметил, что если землетрясение случается на противоположной от установленного сейсмографа стороне Земли, то продольные волны доходят до прибора обычным образом, а вот поперечные как будто огибают некое препятствие в центре Земли. Поскольку ученые уже знали, что поперечные волны, в отличие от продольных, не распространяются в жидкости, был сделан вывод, что где-то в центре Земли имеется жидкий слой. Проанализировав записи поперечных волн, ученые выяснили, что верхняя граница этого слоя находится на глубине около 2900 км относительно земной поверхности. Так была открыта еще одна невидимая подземная граница – поверхность Гутенберга.
А затем оказалось, что средняя скорость продольных волн, идущих через центр Земли или очень близко к нему, немного больше, чем у таких же волн, проходящих сбоку от центра. Очевидно, что в центре Земли скорость волн возрастает, и значит, здесь снова происходит изменение физических свойств ядра, а именно, оно из жидкого превращается в твердое! Так ученые установили, что на глубине более 5100 км находится твердое земное ядро.
ГОСТИ ИЗ ПОДЗЕМЕЛЬЯ
Итак, геологи и создали знакомую нам схему строения Земли. То, что выше поверхности Мохоровичича, назвали земной корой, слой между ней и границей Гутенберга – мантией, центральную часть – ядром, а место изменения скорости продольных волн в ядре определили как границу жидкого внешнего и твердого внутреннего ядра. Но из каких же веществ состоят эти слои?
Казалось бы, узнать состав мантии довольно просто, ведь на поверхности Земли много горных пород, которые сформировались в мантии. (Правда, тут нужно отличить породу, зародившуюся в мантии, от породы, образовавшейся в более высоком слое, но это можно сделать, зная, при каком давлении формируется тот или иной вид горных пород). Но проблема в том, что, перемещаясь из глубин Земли к поверхности, породы частично оплавляются. И если по химическому составу они действительно, скорее всего, очень близки к породам мантии, то по структуре – вряд ли.
К счастью, в мантийных породах иногда встречаются фрагменты, которые не подвергались плавлению. Например в базальтах можно найти включения, поднятые с глубины 80 км. А алмазы в кимберлитах (другом виде частично оплавленных пород мантии) образовались, как считают геологи, на глубинах 100-200 км, то есть алмаз – самый глубокий фрагмент Земли, доступный изучению.
Словом, геологический состав мантии установлен довольно точно. Однако остается неизвестным, как различные мантийные породы (а их на сегодняшний день известен уже не один десяток) соотносятся между собой, каковы закономерности их залегания. То, что мы знаем сейчас о мантии, можно сравнить с тем, что может узнать о горах человек, который их никогда не видел, но внимательно изучил гальку, принесенную с гор рекой.
А что же с составом ядра? Никакие его части на поверхности Земли не появлялись. Однако анализируя скорость распространения сейсмических волн в ядре, ученые довольно точно смогли определить его плотность. Оказалось, что на границе с мантией плотность ядра в 10, а в центре – в 14 раз больше плотности воды. Для сравнения: плотность горных пород на поверхности Земли превышает плотность воды в три-четыре раза. Логично предположить, что ядро состоит из металла, причем достаточно тяжелого – магний или алюминий не подойдут. А вот железо годится на эту роль, у него и плотность подходящая, и оно – самый распространенный металл во Вселенной. Поэтому ученые и сделали вывод что ядро Земли, скорее всего, состоит из железа.
Откуда мы знаем, что находится в ядре Земли?
Люди заполнили Землю. Мы завоевывали земли, летали по воздуху, ныряли в глубины океана. Мы даже побывали на Луне. Но мы никогда не были в ядре планеты. Мы даже и близко к нему не подобрались. Центральная точка Земли находится в 6000 километрах внизу, и даже самая дальняя часть ядра находится в 3000 километрах под нашими ногами. Самая глубокая дыра, которую мы сделали на поверхности — это Кольская сверхглубокая скважина в России, да и то она уходит вглубь земли на жалкие 12,3 километра.
Все известные события на Земле происходят близко к поверхности. Лава, которая извергается из вулканов, сначала плавится на глубине нескольких сотен километров. Даже бриллианты, которым необходимо чрезвычайное тепло и давление для образования, рождаются в породах на глубине не более 500 километров.
Все, что ниже, окутано тайной. Кажется недостижимым. И все же мы знаем довольно много интересного о нашем ядре. У нас даже есть некоторое представление о том, как оно сформировалось миллиарды лет назад — и все без единого физического образца. Как же нам удалось узнать так много о ядре Земли?
Для начала нужно хорошо подумать о массе Земли, говорит Саймон Редферн из Кембриджского университета в Великобритании. Мы можем оценить массу Земли, наблюдая за эффектом гравитации планеты, который она оказывает на объекты на поверхности. Выяснилось, что масса Земли составляет 5,9 секстиллиона тонн: это 59 с двадцатью нулями.
Но на поверхности нет признаков такой массы.
«Плотность материала на поверхности Земли намного ниже, чем средняя плотность всей Земли, что говорит нам о том, что есть что-то более плотное, — говорит Редферн. — Это первое».
По существу, большая часть земной массы должна быть расположена по направлению к центру планеты. Следующим шагом будет выяснить, из каких тяжелых материалов состоит ядро. И оно состоит почти полностью из железа. 80% ядра — это железо, однако точную цифру еще придется выяснить.
Главным доказательством этого является огромное количество железа во Вселенной вокруг нас. Это один из десяти самых распространенных элементов в нашей галактике, который также часто встречается в метеоритах. При всем этом на поверхности Земли намного меньше железа, чем можно было бы ожидать. Согласно теории, когда Земли образовалась 4,5 миллиарда лет назад, много железа утекло вниз к ядру.
Там сосредоточена большая часть массы, а значит, и железо должно там быть. Железо также относительно плотный элемент при нормальных условиях, а под сильным давлением в ядре Земли оно будет еще плотнее. Железное ядро могло бы объяснить всю недостающую массу.
Но погодите. Как железо вообще там оказалось? Железо должно было каким-то образом притянуться — в буквальном смысле — к центру Земли. Но сейчас этого не происходит.
Большая часть остальной Земли состоит из горных пород — силикатов — и расплавленное железо с трудом через них проходит. Подобно тому, как вода на жирной поверхности образует капли, железо собирается в небольших резервуарах, отказываясь растекаться и разливаться.
Возможное решение было обнаружено в 2013 году Венди Мао из Стэнфордского университета и ее коллегами. Они задались вопросом, что происходит, когда железо и силикат подвергаются сильному давлению глубоко в земле.
Плотно сжимая оба вещества при помощи алмазов, ученым удалось протолкнуть расплавленное железо через силикат. «Это давление существенно изменяет свойства взаимодействия железа с силикатами, — говорит Мао. — При высоком давлении образуется «сеть плавления».
В этот момент вы можете спросить: откуда мы, собственно, знаем размер ядра? Почему ученые считают, что оно начинается в 3000 километрах? Ответ один: сейсмология.
Когда происходит землетрясение, оно посылает ударные волны по всей планете. Сейсмологи записывают эти колебания. Будто бы мы бьем по одной стороне планеты гигантским молотом и прислушиваемся к шуму на другой стороне.
«В 1960-х годах произошло землетрясение в Чили, которое дало нам огромное количество данных, — говорит Редферн. — Все сейсмические станции по всей Земле записывали толчки этого землетрясения».
В зависимости от маршрута этих колебаний, они проходят через разные участки Земли, и это влияет на то, какой «звук» они издают на другом конце.
В начале истории сейсмологии стало очевидно, что некоторые колебания пропали без вести. Эти «S-волны» ожидали увидеть на другом конце Земли после происхождения на одном, но не увидели. Причина этому простая. S-волны реверберируют через твердый материал и не могут проходить через жидкость.
Должно быть, они столкнулись с чем-то расплавленным в центре Земли. Составив карту путей S-волн, ученые пришли к выводу, что на глубине примерно 3000 километров породы становятся жидкими. Это также говорит о том, что все ядро расплавленное. Но у сейсмологов был и другой сюрприз в этой истории.
Идея Леман была подтверждена в 1970 году, когда более чувствительные сейсмографы показали, что P-волны действительно проходят через ядро и, в некоторых случаях, отражаются от него под некоторыми углами. Неудивительно, что в конце концов они оказываются на другой стороне планеты.
Конкурирующие страны узнавали о ядерном потенциале друг друга и параллельно с этим мы узнавали все больше и больше о ядре Земли. Сейсмология до сих пор используется для обнаружения ядерных взрывов сегодня.
Вопросов от этого не становится меньше, особенно на тему внутреннего ядра. К примеру, насколько оно горячее? Выяснить это оказалось не так-то просто, и ученые долгое время ломали голову, говорит Лидунка Вокадло из Университетского колледжа Лондона в Великобритании. Мы не можем засунуть туда термометр, поэтому единственный возможный вариант — это создать нужное давление в лабораторных условиях.
В 2013 году группа французских ученых произвели лучшую оценку на сегодняшний день. Они подвергли чистое железо давлению в половину того, что имеется в ядре, и отталкивались уже от этого. Температура плавления чистого железа в ядре составляет примерно 6230 градусов. Присутствие других материалов может немного снизить точку плавления, до 6000 градусов. Но это все равно горячее, чем на поверхности Солнца.
Будучи своего рода поджаренной картошкой в мундире, ядро Земли остается горячим, благодаря теплу, оставшемуся от образования планеты. Оно также извлекает тепло из трения, возникающего по мере движения плотных материалов, а также распада радиоактивных элементов. Остывает оно примерно на 100 градусов по Цельсию каждый миллиард лет.
Знать эту температуру полезно, поскольку она влияет на скорость прохождения колебаний через ядро. И это удобно, потому что в этих вибрациях есть что-то странное. P-волны проходят неожиданно медленно через внутреннее ядро — медленнее, чем если бы оно состояло из чистого железа.
«Скорости волн, которые сейсмологи измерили в землетрясениях, значительно ниже, чем показывает эксперимент или компьютерный расчет, — говорит Вокадло. — Никто пока не знает, почему так».
Очевидно, к железу примешивается другой материал. Возможно, никель. Но ученые посчитали, как сейсмические волны должны проходить через железо-никелевый сплав, и не смогли подогнать расчеты под наблюдения.
Вокадло и ее коллеги в настоящее время рассматривают возможность присутствия в ядре других элементов, например, серы и кремния. Пока никто не смог придумать теорию состава внутреннего ядра, которая удовлетворила бы всех. Проблема Золушки: туфелька никому не подходит. Вокадло пытается экспериментировать с материалами внутреннего ядра на компьютере. Она надеется найти комбинацию материалов, температур и давления, которые будут замедлять сейсмические волны на правильную величину.
«Если этот эффект реален, мы могли бы примирить результаты минеральной физики с результатами сейсмологии, — говорит Вокадло. — Люди пока не могут этого сделать».
Существует еще много загадок, связаных с ядром Земли, которые еще предстоит решить. Но не имея возможности погрузиться на эти невообразимые глубины, ученые совершают подвиг, выясняя, что находится в тысячах километров под нами. Скрытые процессы недр Земли чрезвычайно важно изучать. У Земли есть мощное магнитное поле, которое генерируется благодаря частично расплавленному ядру. Постоянное движение расплавленного ядра порождает электрический ток внутри планеты, и он, в свою очередь, генерирует магнитное поле, которое уходит далеко в космос.
Это магнитное поле защищает нас от вредного солнечного излучения. Не будь ядро Земли таким, каким оно является, не было бы магнитного поля, а мы бы серьезно от этого страдали. Вряд ли кто-нибудь из нас сможет увидеть ядро своими глазами, но хорошо просто знать, что оно там есть.
Люди заполнили Землю. Мы завоевывали земли, летали по воздуху, ныряли в глубины океана. Мы даже побывали на Луне. Но мы никогда не были в ядре планеты. Мы даже и близко к нему не подобрались. Центральная точка Земли находится в 6000 километрах внизу, и даже самая дальняя часть ядра находится в 3000 километрах под нашими ногами. Самая глубокая дыра, которую мы сделали на поверхности — это Кольская сверхглубокая скважина в России, да и то она уходит вглубь земли на жалкие 12,3 километра.
Все известные события на Земле происходят близко к поверхности. Лава, которая извергается из вулканов, сначала плавится на глубине нескольких сотен километров. Даже бриллианты, которым необходимо чрезвычайное тепло и давление для образования, рождаются в породах на глубине не более 500 километров.
Все, что ниже, окутано тайной. Кажется недостижимым. И все же мы знаем довольно много интересного о нашем ядре. У нас даже есть некоторое представление о том, как оно сформировалось миллиарды лет назад — и все без единого физического образца. Как же нам удалось узнать так много о ядре Земли?
Но на поверхности нет признаков такой массы.
Дальше читать не стал.
ФОРМАЛИН | Подозрение на: флуд Статья #2 дезинформационного кодекса Выполненное действие: пользователь предупрежден Погрешность принятого решения: 27% |
«Плотность материала на поверхности Земли намного ниже, чем средняя плотность всей Земли, что говорит нам о том, что есть что-то более плотное, — говорит Редферн. — Это первое».
По существу, большая часть земной массы должна быть расположена по направлению к центру планеты. Следующим шагом будет выяснить, из каких тяжелых материалов состоит ядро. И оно состоит почти полностью из железа. 80% ядра — это железо, однако точную цифру еще придется выяснить.
Главным доказательством этого является огромное количество железа во Вселенной вокруг нас. Это один из десяти самых распространенных элементов в нашей галактике, который также часто встречается в метеоритах. При всем этом на поверхности Земли намного меньше железа, чем можно было бы ожидать. Согласно теории, когда Земли образовалась 4,5 миллиарда лет назад, много железа утекло вниз к ядру.
Там сосредоточена большая часть массы, а значит, и железо должно там быть. Железо также относительно плотный элемент при нормальных условиях, а под сильным давлением в ядре Земли оно будет еще плотнее. Железное ядро могло бы объяснить всю недостающую массу.
Но погодите. Как железо вообще там оказалось? Железо должно было каким-то образом притянуться — в буквальном смысле — к центру Земли. Но сейчас этого не происходит.
Большая часть остальной Земли состоит из горных пород — силикатов — и расплавленное железо с трудом через них проходит. Подобно тому, как вода на жирной поверхности образует капли, железо собирается в небольших резервуарах, отказываясь растекаться и разливаться.
Возможное решение было обнаружено в 2013 году Венди Мао из Стэнфордского университета и ее коллегами. Они задались вопросом, что происходит, когда железо и силикат подвергаются сильному давлению глубоко в земле.
Плотно сжимая оба вещества при помощи алмазов, ученым удалось протолкнуть расплавленное железо через силикат. «Это давление существенно изменяет свойства взаимодействия железа с силикатами, — говорит Мао. — При высоком давлении образуется «сеть плавления».
Это может говорить о том, что железо постепенно проскальзывало через породы Земли в течение миллионов лет, пока не достигло ядра.
В этот момент вы можете спросить: откуда мы, собственно, знаем размер ядра? Почему ученые считают, что оно начинается в 3000 километрах? Ответ один: сейсмология.
Когда происходит землетрясение, оно посылает ударные волны по всей планете. Сейсмологи записывают эти колебания. Будто бы мы бьем по одной стороне планеты гигантским молотом и прислушиваемся к шуму на другой стороне.
«В 1960-х годах произошло землетрясение в Чили, которое дало нам огромное количество данных, — говорит Редферн. — Все сейсмические станции по всей Земле записывали толчки этого землетрясения».
В зависимости от маршрута этих колебаний, они проходят через разные участки Земли, и это влияет на то, какой «звук» они издают на другом конце.
В начале истории сейсмологии стало очевидно, что некоторые колебания пропали без вести. Эти «S-волны» ожидали увидеть на другом конце Земли после происхождения на одном, но не увидели. Причина этому простая. S-волны реверберируют через твердый материал и не могут проходить через жидкость.
Должно быть, они столкнулись с чем-то расплавленным в центре Земли. Составив карту путей S-волн, ученые пришли к выводу, что на глубине примерно 3000 километров породы становятся жидкими. Это также говорит о том, что все ядро расплавленное. Но у сейсмологов был и другой сюрприз в этой истории.
В 1930-х годах датский сейсмолог Инге Леман обнаружила, что другой тип волн, P-волны, неожиданно прошли через ядро и были обнаружены на другом конце планеты. Сразу последовало предположение, что ядро разделено на два слоя. «Внутреннее» ядро, которое начинается в 5000 километрах внизу, было твердым. Расплавлено только «внешнее» ядро.
Идея Леман была подтверждена в 1970 году, когда более чувствительные сейсмографы показали, что P-волны действительно проходят через ядро и, в некоторых случаях, отражаются от него под некоторыми углами. Неудивительно, что в конце концов они оказываются на другой стороне планеты.
Конкурирующие страны узнавали о ядерном потенциале друг друга и параллельно с этим мы узнавали все больше и больше о ядре Земли. Сейсмология до сих пор используется для обнаружения ядерных взрывов сегодня.
masterok
Мастерок.жж.рф
Хочу все знать
Давайте посмотрим, откуда она взялась и какое ее ждет будущее.
Как появилась Земля
У звезд есть протопланетные диски. Это облака пыли, которые вращаются вокруг своих звезд когда они только образовались. Протопланетный диск в начале раскаленный. И подпитывает звезду веществом.
Со временем протопланетный диск начинает остыватьЧ частицы собираются в более плотные комки вещества. Сперва появляются частички размером до 1 сантиметра. Затем из них начинают образовываться глыбы из льда и камня. Они сталкиваются друг с другом и постепенно слипаются.
Глыба становится все больше, вещество начинает уплотняться все сильнее, собирая окрестные микрочастицы.
Формируется объект, который в астрофизике называется планетезималь. Глыба, напоминающая астероид.
В определенный момент, когда масса становится очень большой, планета начинает принимать форму шара. Это максимально эргономичная форма для объекта с большой гравитацией.
Параллельно идет зачистка орбиты. Объекты с пересекающимися орбитами сталкиваются, в результате у каждой планеты возникает своя, самостоятельная орбита.
В раскаленном шарике более плотное вещество погружалось вниз. В итоге образовались слои с ядром внутри. Земное ядро состоит из сплава железа и никеля с небольшими добавками. Металлическое ядро в дальнейшем сыграет огромную роль для всего живого на Земле.
Ведь такая слоистая структура с металлическим ядром внутри привело к появлению магнитного поля. Это поле отклоняет космическую радиацию, которая разрушительна для всего живого. Также магнитное поле защищает атмосферу, не дает ей рассеяться.
Газы, которые выходили из земной коры, образовали первичную атмосферу, состоящую, преимущественно, из водорода и гелия. Хоть Земля и успешно отбивала радиацию и солнечный ветер, условия на ней были слабо пригодны для жизни.
Откуда же на Земле появилась вода?
Тяжелая бомбардировка: как 4 млрд лет назад Земля была расстреляна метеоритами
Поздняя тяжелая бомбардировка – так в геофизике называется период 4 млрд лет назад, когда Земля была буквально расстреляна метеоритами.
Метеориты буквально взрывали земную кору, оплавляли поверхность. И сильно повлияли на геологию нашей планеты и на состав полезных ископаемых.
Оценить, сколько метеоритов упало на Землю, сейчас сложно – океаны, земля, живые организмы внесли свои коррективы. Но масштаб проблемы можно оценить по Луне. В то время на спутнике Земли образовалось более 22 тысяч крупных кратеров, диаметр которых превышает 20 км. При этом 40 кратеров превышает 1 тыс км, есть несколько свыше 5 тыс км.
Для сравнения: кратер, который уничтожил динозавров, в диаметре достигает 180 км. А кратер, из-за которого предположительно случилось пермское вымирание, когда погибло 96% видов живых организмов – в диаметре составляет 500 км.
Последняя метеоритная бомбардировка состоялась 3,8 млрд лет назад. Воды на Земле очень мало. Но достаточно для жизни
Считаете, что наша планета богата водой?
Какая форма у нашей Земли
Разумеется, не плоская. Но и не. шар! Земля представляет собой эллипсоид. Ее диаметр не равномерен по поверхности. На экваторе диаметр на 43 километра больше, чем на полюсах. Получается, наша планета немножко сплюснута.
Когда возникла жизнь на Земле
Интересный факт. Жизнь меняет Землю
Жизнь появилась на нашей планете, но она, в свою очередь, сильно влияет на экосистему Земли. Например, на нашей планете не было кислорода в таком количестве. Он возник из-за деятельности микроорганизмов.
Сперва развилась до одноклеточных форм, которые тонким слоем покрывали дно океана. Питались они с помощью фотосинтеза и плавно наполняли атмосферу нашей планеты кислородом.
Со временем активность Солнца росла, льды отступали. Это стимулировало развитие жизни. Сложные многоклеточные появились лишь 580 миллионов лет назад.
Сколько времени осталось для жизни на Земле
Не так то много, как могло бы показаться на первый взгляд. По разным оценкам, условия на Земле будут благоприятны для жизни еще в течение от 0,5 до 1 миллиардов лет.
Однако Солнце, по оценкам современных ученых, будет существовать еще, как минимум, 7,5 миллиардов лет. Что же такого произойдет с Землей, что жить на нашей планете станет невозможно?
Что ждет Землю дальше
Благоприятный период для нашей планеты продлится не так уж долго. Произойдет ряд внешних и внутренних изменений, которые сильно ударят по всему живому на планете.
Через 1 миллиард лет это будет сильно заметно. Температура поднимется настолько, что океаны начнут испаряться. Вода на планете будет все больше существовать не в жидком и твердом состоянии, а в виде пара. А через 1,1 миллиард лет все океаны, скорее всего, испарятся с поверхности планеты.
Через 3,5 миллиарда лет на нашей планете будет также жарко, как на Венере.
Кроме этого, активность Солнца приведет к снижению концентрации углекислого газа в атмосфере планеты, так как будут выветриваться силикатные материалы. Углекислого газа станет мало для фотосинтеза. Именно на этом факте основан прогноз, что жизнь на Земле начнет резко исчезать уже через 500 миллионов лет.
Через 1,5 миллиарда лет наклон оси нашей планеты начнет хаотично меняться, вплоть до отклонения на 90 градусов. Почему наклон оси будет меняться? Во-первых, будет меняться трение между внутренними слоями, в частности, между мантией и ядром. Во-вторых, Луна постепенно удаляется от Земли почти на 4 сантиметра в год. И через полтора миллиарда лет ее влияние заметно снизится.
Если Земля будет направлена к Солнцу под углом 90 градусов, то полюса станут перпендикулярны. Одна половина будет получать много тепла и света, а другая страдать от их нехватки. Соответственно, в первом случае климат будет слишком жарким, когда температура поверхности будет подниматься до 80 градусов. В темной части планеты будет сильный холод.
Земное ядро будет остывать. Это приведет к серьезным климатическим переменам. Как я писал выше, трение между мантией и ядром изменится, что повлияет на скорость вращения и угол наклона.
Сутки увеличатся из-за замедления вращения. Через 250 миллионов лет сутки будут длиться 25,5 часов.
Вид с Земли на Солнце, которое стало растущим красным гигантом
Солнце начнет превращаться в красного гиганта и резко расти в размерах. Это связано с падением давления внутри светила, так как вещество постепенно прогорает в его недрах.
И через 5 миллиардов лет красный гигант достигнет орбиты Земли и захватит нашу планету.
После стадии красного гиганта (расплавив при этом все планеты земной группы) Солнце просто сбросит внешнюю оболочку, образовав планетарную туманность, которая постепенно рассеется. А оставшееся на своем месте ядро Солнца, лишенное оболочек, станет гелиевым белым карликом и будет остывать несколько миллиардов лет.
Последние дни Земли будут выглядеть так
На самом деле жить на Земле станет абсолютно невозможно гораздо раньше. Нам отпущено примерно половина миллиарда.
500 миллионов лет. Не так уж много нам и осталось, чтобы суметь развиться до такой степени, чтобы улететь от катастрофических изменений на нашей планете.
С другой стороны, представьте, как люди, уже из другой звездной системы, будут со стороны смотреть на рост красного гиганта. И рассказывать, как когда-то в этой звездной системе родилась жизнь, которая распространилась по всей галактике!