как определить что микросхема сгорела
Как проверить микросхему на работоспособность мультиметром не выпаивая
Не все знают, как проверить микросхему на работоспособность мультиметром. Даже при наличии прибора не всегда удается это сделать. Бывает, выявить причину неисправности легко, но иногда на это уходит много времени, и в итоге нет никаких результатов. Приходится заменять микросхему.
Способы проверки
Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов.
Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:
Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.
Влияние разновидности микросхем
Сложность проверки во многом зависит не только от способа, но и от самих схем. Ведь эти детали электронно-вычислительных устройств хоть и имеют один и тот же принцип построения, но нередко сильно отличаются друг от друга.
Например:
Важно помнить, что подаваемое на микросхему (микроконтроллер) напряжение не должно превышать норму или, наоборот, быть меньше необходимого уровня. Предварительную проверку можно провести на специально подготовленной проверочной плате.
Нередко после тестирования микросхемы приходится удалять некоторые ее радиоэлементы. При этом каждый из узлов должен быть проверен отдельно.
Работоспособность транзисторов
Перед проверкой радиодетали мультиметром, не выпаивая, нужно обязательно определить, к каким из двух типов относится транзистор — полевым или биполярным. Если к первым, то можно применять следующий способ проверки:
Если транзистор является биполярным, то щупы должны меняться местами. Разумеется, цифры на экране прибора в этом случае будут обратные.
Конденсаторы, резисторы и диоды
Работоспособность конденсатора микросхемы также проверяется путем прикладывания щупов к его выходам. За очень короткий промежуток времени значение показываемого прибором сопротивления должно увеличиться от нескольких единиц до бесконечности. При изменении мест щупов должен наблюдаться тот же самый процесс.
Чтобы узнать, работает ли резистор схемы, необходимо определить его сопротивление. Значение этой характеристики должно быть больше нуля, однако не являться бесконечно большим. Если при проверке на дисплее прибора отображается не ноль и не бесконечность, значит, резистор работает корректно.
Не отличается особой сложностью и процесс проверки диодов. Сначала нужно определить сопротивление между катодом и анодом в одной последовательности, а затем, поменяв местоположение черного и красного щупов прибора, в другой. Об исправности диода будет говорить стремление отображаемого на экране числа к бесконечности в одном из этих двух случаев и нахождение его на отметке в несколько единиц — в другом.
Индуктивность, тиристор и стабилитрон
Проверяя микросхему на наличие неисправностей, возможно, придется также использовать мультиметр на катушке с током. Если где-то ее провод оборван, то прибор обязательно даст об этом знать. Главное, конечно, правильно его применить.
Все, что необходимо сделать для проверки катушки — замерить ее сопротивление: оно не должно быть бесконечным. Стоит помнить, что не каждый из имеющихся сегодня в продаже мультиметров может проверять индуктивность. Если нужно определить, является ли исправным такой элемент микросхемы, как тиристор, то следует выполнить следующие действия:
Если при проверке все будет именно так, значит, тиристор работает правильно, никаких неисправностей у него нет.
Чтобы проверить стабилитрон, нужно его анод соединить с резистором, а затем включить ток и постепенно поднимать его. На экране прибора должен отображаться постепенный рост напряжения. Через некоторое время этот показатель останавливается в какой-то точке и прекращает увеличиваться, даже если проверяющий по-прежнему увеличивает его посредством блока питания. Если рост напряжения прекратился, значит, проверяемый элемент микросхемы работает правильно.
Проверка микросхемы на исправность — это процесс, который требует серьезного подхода. Иногда можно обойтись без специального прибора и попробовать обнаружить дефекты визуально, используя для этого, например, увеличительное стекло.
Методы поиска неисправностей в электронных схемах
Чаще всего люди интересуются электроникой чтобы уметь починить какой-либо прибор. Самостоятельной разработкой занимается лишь малая часть любителей. Теоретические знания хоть и дают общее понимания принципа работы компонентов, но для ремонта гораздо важнее знать методы их проверки. Мы расскажем, как найти неисправность в электронной схеме своими руками, глазами и простым инструментом.
Основные способы поиска неполадки
Прежде чем провести ремонт важно определить в чем проблема – этот процесс называется диагностикой. Итак, можно выделить два этапа проверки электронных приборов:
1. Проверка работоспособности прибора. Не всегда случается так что устройство совсем «мёртвое», нужно проверить не включается прибор совсем, или включается и сразу выключается, или же не работают какие-то конкретные кнопки или функции.
Например, при ремонте LCD-мониторов встречается такая проблема как выход из строя подсветки. При этом монитор может либо не включатся совсем тогда его индикатор моргает, либо же индикатор указывает на включенное состояние, но изображения нет. В таком случае если посветить фонарём в экран можно увидеть, что изображение все-таки есть и монитор как бы работает, но он тёмный – и это только один из примеров, когда предварительная проверка упрощает диагностику.
2. Визуальный осмотр. Внешне можно определить большинство проблем с электрическим прибором. Это могут быть как просто сгоревшие компоненты – диоды, резисторы, транзисторы и конденсаторы, так и дефекты пайки или механические повреждение элементов и самой печатной платы.
3. Измерения. Если плата и детали выглядят нормально, то следует переходить к измерениям. Их проводят в основном с помощью мультиметра и осциллографа. В отдельных случаях используют специализированные приборы, типа частотомеров, логических анализаторов и прочего.
Итак, обобщенным алгоритмом поиска неисправности является:
Определение чрезмерного нагрева электронных компонентов платы;
Измерения и прозвонка мультиметром;
Использование осциллографа и других приборов;
Замена вышедшей из строя детали или блока.
Визуальный осмотр
Визуальный осмотр следует проводить от общего к частному. Или простыми словами – осмотреть общий вид электронного устройства, сразу проверяем целостность кабелей и проводов питания. Их покров должен быть ровным и целым, без изломов и резких перегибов, шишек и других неравномерностей на оболочке быть не должно.
После того как вы убедились в целостности устройства, нужно его разобрать и добраться к печатной плате. Осмотр внутренностей следует начинать с проверки целостности шлейфов, проводов других межблочных соединений. Важно не порвать их еще при разборке, так как часто шлейфы идут от плат к блокам клавиш и дисплеям, закрепленным на корпусе.
Далее проверяют целостность предохранителя в цепи питания, часто если он перегорел можно определить невооруженным взглядом. Он стоит около того места где подключается к плате шнур питания.
После этого осматривают наличие следов нагрева или сажи на плате и поврежденные компоненты. Рассмотрим, как выглядят неисправные электронные компоненты. Например, корпуса неисправных транзисторов и сгоревших диодов разрывает или они трескаются.
На интегральных микросхемах появляется трещина или мелкая точка. В некоторых случаях и те, и другие сгорают, оставляя в результате следы гари на плате. Обращайте внимание нет ли характерного запаха горелой изоляции. Так можно локализировать от какого элемента или участка платы исходит этот запах. Как определить сгоревшие транзисторы и микросхемы вы видите ниже.
Резисторы обычно сгорают или темнеют, реже происходит обрыв резистивного слоя и деталь выглядит исправной.
Как определить сгоревшие конденсаторы? Они в основном пробивают «накоротко» между обкладками и, если стоят в силовой цепи – тогда повреждаются дорожки платы или корпус конденсатора. Если цепь была слаботочной – пробитый конденсатор просто закоротит её без видимых следов протекания больших токов. Реже трескаются корпуса конденсаторов.
В то время как электролитические конденсаторы можно вычислить по деформированной крышке корпуса или следам протекшего вниз электролита. На крышке конденсатора есть две диагональных борозды, она нужна чтобы корпус не разорвало в аварийной ситуации. Крышка в таком случае вздувается либо трескается. Реже выдавливает дно.
С SMD-компонентами дело обстоит несколько сложнее. Часто их крайне сложно рассмотреть на предмет целостности. Есть один метод поиска короткого замыкания в плате с SMD – это термобумага, такая бумага используется в кассовой аппарате, поэтому можно использовать любой чек. Печать на ней происходит за счет нагрева. Значит, когда вы подадите питание на плату пробитая накоротко деталь, перегреется и отпечатается на бумаге. Методику поиска неисправности с помощью термобумагивы видите на видео:
Но нужно помнить об электробезопасности и не прибегать к такому способу диагностики, если вы не уверены есть ли там опасное напряжение. Безопасно и точно это можно сделать с помощью тепловизора.
Для определения короткого замыкания по нагреву в большинстве случаев вам понадобится лабораторный блок питания или другой источник питания с ограничением тока. Если вы проводите диагностику цепей 220В – можете воспользоваться контрольной лампой, если есть КЗ, то лампа загорится в полный накал. Фактически она выступит в роли токоограничивающего резистора.
При визуальном осмотре важно определить состояние контактов всех разъёмных соединений. Они должны быть чистыми, без окислов с характерным медным или серебряным блеском. Если контакты не слишком сильно окислены – их можно почистить канцелярским ластиком или деревянной стороной спички.
В более запущенных случаях их нужно залудить, таким образом оловом вы восстановите контактную поверхность. Самый худший вариант, когда ни чистить, ни лудить нечего, тогда нужно либо менять плату целиком, либо припаивать к дорожкам платы проводники и соединять через них.
Также внимательно осматриваете дорожки печатной платы, они могут перегорать, трескаться при изгибе платы, отслаиваться и окисливаться. Их восстанавливают либо каплей олова, либо кусочком провода, когда дорожки расположены слишком плотно – их замещают куском провода – подойдет тонкий обмоточный провод либо жила витой пары, припаивая их к началу и концу печатной дорожки.
Подведем итоги, узнайте 5 советов по внешней диагностике электроники:
1. Большинство неисправностей можно найти при внешнем осмотре;
2. Внимательно проверяйте качество пайки и наличие микротрещин;
3. Уделяйте особое внимание силовым цепям;
4. Вздутые электролитические конденсаторы в большинстве случаев являются как причиной полной неработоспособности, так и неработоспособности каких-то отдельных функций;
5. Не всегда внешне исправная деталь является таковой.
Измерения и прорзвонка цепей
Если внешний осмотр не принес результатов, то следует проводить ряд измерений. Если устройство не подаёт признаков жизни и:
У него сгорел предохранитель – то с помощью мультиметра прозваниваем цепь и находим на каком участке у нас короткое замыкание. Режим прозвони в большинстве мультиметров совмещен с режимом проверки диодов (на рисунке ниже);
Если предохранитель исправен – проверяем вольтметром приходит ли питающее напряжение на плату.
Если напряжение не приходит, то проблема скорее всего в кабеле, определить это можно прозвонив кабель от вилки до места подключения к печатной плате.
Не включайте блок питания напрямую в сеть, если вы не уверены, что устранили все неполадки. Подключите последовательно лампочку накаливания, о которой мы упоминали в середине статьи.
Следующий шаг – проверка цепи питания, для этого включаем устройство и проверяем наличие выходных напряжений блока питания. Учтите, что бывают случаи, когда без нагрузки блок питания не включается. Тогда проверяем исправность блока питания, её начинают с проверки диодного моста, мы рассматривали этот процесс подробно в статье – Как проверить диодный мост
После того как вы убедились в исправности диодного моста следует проверить приходит ли напряжение на ШИМ контроллер. Если нет, то искать, обрыв на плате, если приходит, то методика его проверки изображена на видео ниже:
Также следует по блокам проверить источник питания. Об этом вы можете почитать в статье о ремонте блоков питания для светодиодных лент.
Дальнейшая диагностика платы электронного устройства заключается в пошаговом измерении параметров каждого из компонентов и сравнение их с номинальными величинами. Задаче сильно упрощается если у вас есть схема ремонтируемого устройства.
Если у вас есть осциллограф диагностика сильно упростится, так как проверка сигналов ШИМ, на выходе контроллера и на базах или затворах транзисторов нормально возможна лишь таким образом. Как пользоваться осциллографом описано в статье Что можно сделать с помощью осциллографа и ряде других статей нашего сайта из тематического раздела Практическая электроника.
Заключение
Ремонт электроники – это не только знания принципа работы элементов, но и интуиция, опыт и удача. Главное помнить при ремонте о технике безопасности – не следует трогать плату источников питания, если на неё подано напряжение. Разряжайте фильтрующие конденсаторы блоков питания, поскольку на их выводах может быть напряжение до 300 вольт. А также при диагностике цепей с интегральными микросхемами – лучше сразу ищите техническую документацию к ним, её можно найти по запросу «datasheet название микросхемы».
Неисправности микросхем
Но как диагностировать микросхемы, если все компоненты находятся в одном корпусе? Микросхему на исправность сложнее проверить, чем условный биполярный транзистор или резистор, но это вполне возможно сделать даже без мультиметра.
Визуальная диагностика
Радиодетали не выходят из строя просто так. И последствия их неисправностей можно увидеть визуально. Рассмотрим наиболее частые неисправности, когда их можно заметить визуально.
Условно все причины неисправностей можно разделить на 3 категории: попадание влаги, механические и электрические повреждения.
Все они могут быть взаимосвязаны, и даже зависеть друг от друга. Рассмотрим поподробнее каждую типичную неисправность микросхем с диагностикой и примерами.
Электрические повреждения
Микросхема может выйти из строя из-за банального короткого замыкания. Обычно на таких микросхемах могут появиться дырки. Это называется тепловым пробоем.
Тепловой пробой – это когда через микросхему прошел ток, который повредил ее настолько, что на корпусе появилась дырка. Т.е. она «сгорела», и даже дымилась какое-то время. Дырка на корпусе появляется от большого количества тепла, который создал проходящий через микросхему ток. Микросхема не рассчитана на такой ток, поэтому ее корпус не выдерживает, и начинает разрушение в уязвимом участке.
Ниже приверед наглядный пример теплового пробоя микросхемы управления шаговым двигателем (драйвер).
На микросхеме был установлен радиатор, но даже это не спасло микросхему от теплового пробоя.
Как правило такие микросхемы полностью утрачивают свою работоспособность. А еще при таком тепловом пробое могут повредиться дорожки. После выпаивания поврежденной микросхемы внимательно посмотрите на дорожки и окружающие детали, чтобы они были целые и без повреждений. Еще может вздуться текстолит, но это происходит очень редко.
Также при коротком замыкании микросхемы могут полностью обуглиться, и оставить следы нагара на плате и окружающих деталях. Нагар надо обязательно удалять с платы т.к. он может проводить ток.
Проверка микросхем мультиметром
Иной пример абсолютно аналогичной неисправности можно найти в ноутбуках.
Например, на платах ноутбуков достаточно случайно закоротить USB порт (или статическим электричеством), и тут же может выйти из строя хаб (группа микросхем). И это 100% короткое замыкание. И при этом визуально микросхема будет без каких-либо повреждений. Тем не менее, таких микросхемы можно легко проверить на исправность мультиметром.
В качестве примере рассмотрим проверку микросхемы в DIP корпусе.
У каждой микросхемы есть питание. И как правило именно оно и выходит из строя, если микросхема не выполняет своих функций.
Ниже приведен пример распиновки микросхемы-таймера NE555.
У этой микросхемы (как и у любой другой) есть питание. Питание обозначается Vcc (грубо говоря плюс) и GND (минус). При помощи мультиметра можно проверить целостность питания, как будто проверяем обычный диод на исправность.
В примере ниже мультиметром будет проверяться другая микросхема, но суть одна и та же.
Переключаем мультиметр в режим прозвонки.
Режим прозвонки обычно показывают в виде УГО диода со знаком излучения звука.
И теперь достаточно прозвонить Vcc и GND (питание) микросхемы.
Как и диод, она не должна показывать нули при прямой прозвонке (плюсовой щуп мультиметра к плюсу (Vcc) микросхемы, минусовой щуп мультиметра к минусу (GDD)).
Так и при обратной.
Конечно этот метод не универсален. Например, есть платы у которых обвязка возле микросхем может влиять на измерения. Либо придется выпаивать микросхему из платы, либо отпаивать детали или выводы микросхемы, чтобы они не влияли на проверку.
Однако диагностировать те же ноутбуки на исправности видеочипа или хаба достаточно просто, если знать их рабочие сопротивления и состояния. И там влияние компонентов не толь велико. Все зависит от платы.
Проверка при помощи сервис мануалов
У каждой выпускаемой техники существуют сервис мануалы. По ним можно проверять работоспособность плат (соответственно, и микросхем) следуя инструкциям. Например «На контакте шлейфа номер 12 есть напряжение 5в?». И далее несколько следующих шагов, которые приведут к окончательному решению по ремонту.
Хотя в сервис мануалах рекомендуют менять плату сразу целиком, даже без конкретных замены радиодеталей.
Конечно не получится найти мануал на любую технику в силу различных обстоятельств, но можно найти технику, где используется аналогичная микросхема или плата. У смартфонов разных производителей могут быть одинаковые контроллеры питания. Поэтому здесь важен опыт и навыки поиска информации.
Также не стесняйтесь спрашивать информацию о микросхемах на форумах и группах в социальных сетях об электронике. (естественно перед этим самостоятельно поискав информацию во всех доступных источниках)
Типовые схемы включения
Помимо сервис мануалов еще есть и даташиты с простыми схемами выключения. Т.е. грубо говоря можно собрать схему для простой проверки работоспособности микросхем.
Почему микросхема греется и методы ее диагностики
Еще один типичный случай с кротким замыканием – это когда микросхема сильно греется. Здесь возможны сразу несколько вариантов.
Большинство начинающих ремонтников сразу же заявляют, что если микросхема греется, то именно она неисправна. Это отчасти правда, но только в редких случаях. Если микросхема греется – это не значит, что именно она неисправна. Но именно это влияет на ее функции и общую работоспособность платы и устройства в целом.
В качествен примера рассмотрим ситуацию с контроллерами питания на смартфонах. Эти микросхемы управляют питанием всей узлов устройства. И именно через нее проходят все токи. Допустим, микросхема греется, и вы поменяли ее. И снова та же проблема. А проблем оказалась вообще не в ней, а в другой части платы, где есть короткое замыкание.
Через микросхему проходит большой ток именно в ту часть платы, где находится неисправная радиодеталь, которая как раз вызывает сильный нагрев микросхемы.
Можно как визуально найти неисправную коротящую деталь (она может быть повреждена, со следами окисла, более темная, со следами ржавчинами и т.п.), так и по выделяемому теплу.
Если с визуальным обнаружением могут возникнуть проблемы (без микроскопа найти на плате поврежденный SMD конденсатор или резистор довольно проблематично + нужно внимание), то с обнаружением по выделяемому теплу все куда может быть проще.
Конечно тут тоже бывают разные случаи. Одно дело нагрев от 2 А, а другое дело от 20 мА. Хотя природа неисправностей могут быть идентичны, но методы диагностики придется использовать разные.
Жив или мёртв? Проверяем радиодетали
Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр
Транзисторы биполярные
Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов
Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!
Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!
Транзисторы униполярные (полевые)
У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.
Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный — к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.
Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.
Конденсаторы
Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.
Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.
Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.
Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.
Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.
Резисторы
Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.
Диоды
Индуктивность
Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!
Оптопары
Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.
Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!
Тиристоры
Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.
Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.
Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!
Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.
Стабилитроны
Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300. 500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.
Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!
Стабисторы
Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.
Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200. 500Ом. Повышаем напряжение, меряя напряжение на стабисторе.
Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!
Шлейф/разъём
Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!
Микросхемы/ИМС
Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.
Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.
Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.
Ну всё, ни пуха Вам, и поменьше горелых деталек!