как показать что треугольник равносторонний
Свойства равностороннего треугольника: теория и пример задачи
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
Равносторонний треугольник (ЕГЭ 2022)
И вот мы снова изучаем треугольники. Это всё больше похоже на заговор…
Не волнуйся: после прочтения этой статьи тайн не останется, ведь ты будешь знать всё о равностороннем треугольнике!
Тема простая, но очень важная!
Равносторонний треугольник — коротко о главном
Равносторонний треугольник —треугольник, у которого все стороны равны. \(AB=BC=AC=a\)
В равностороннем треугольнике все углы равны между собой и равны \(<<60>^
>\).
В равностороннем треугольнике каждая медиана совпадает с биссектрисой и высотой, которые проведены из той же вершины;
Точки пересечения высот, биссектрис, медиан и серединных перпендикуляров равностороннего треугольника совпадают.
Центры вписанной и описанной окружностей равностороннего треугольника совпадают: точка \(O\);
В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны \(a\):
Определение равностороннего треугольника
Равносторонний треугольник —треугольник, у которого все стороны равны.
Какие же особенные свойства присущи равностороннему треугольнику?
Свойства равностороннего треугольника
Свойство 1. В равностороннем треугольнике все углы равны между собой и равны \(<<60>^
>\)
Естественно, не правда ли? Три одинаковых угла, в сумме \(<<180>^
Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).
Почему так? А посмотрим-ка на равносторонний треугольник.
Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.
Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром!
В равностороннем треугольнике оказалось не \(12\) особенных линий, как во всяком обычном треугольнике, а всего три!
Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.
Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной. \(R=2\cdot r\)
Уже должно быть очевидно, отчего так.
Посмотри на рисунок: точка\( O\) – центр треугольника.
Значит, \(OB\) – радиус описанной окружности (обозначили его \(R\)), а \(OK\) – радиус вписанной окружности (обозначим \(r\)).
Но ведь точка \(O\) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении \(2:1\), считая от вершины.
Поэтому \(OB=2\cdot OK\), то есть \(R=2\cdot r\).
Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.
Давай удостоверимся в этом.
Высота равностороннего треугольника
Рассмотрим \(\Delta ABK\) – он прямоугольный.
Радиус описанной окружности равностороннего треугольника
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Радиус вписанной окружности равностороннего треугольника
Это уже теперь должно быть совсем ясно:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Бонус 1. Статьи о других треугольниках
Подробная информация о других треугольниках в следующих статьях:
А в нашем учебнике по подготовке к ЕГЭ по математике вы найдете подробную информацию о других разделах математики:
Бонус 2: Вебинары о треугольниках, чтобы набить руку в решении задач
А в этих видео из нашего курса подготовки к ЕГЭ по математике вы можете потренироваться, решая задачи вместе с нашим репетитором Алексеем Шевчуком.
Это не просто вебинары, «бла-бла-бла» о теории математики. Это разбор задач в режиме реального времени.
Вы точно научитесь решать любые задачи на эти темы, если их прослушаете.
Хотите получить максимум от этих вебинаров? Берите ручку и бумагу и решайте вместе с Алексеем Шевчуком.
ЕГЭ 6. Прямоугольный треугольник: свойства, теорема Пифагора, тригонометрия
Подавляющее большинство задач в планиметрии решается через прямоугольные треугольники.
Как это так? Ведь далеко не в каждой задаче речь идёт о треугольниках вообще, не то что прямоугольных.
Но в этом видео мы убедимся, что это действительно так. Дело в том, что редкая сложная задача решается какой-то одной теоремой — почти всегда она разбивается на несколько задач поменьше. И в итоге мы имеем дело с треугольниками, зачастую — прямоугольными.
На этом уроке мы научимся решать задачи о прямоугольных треугольниках из ЕГЭ, выучим все необходимые теоремы и затронем основы тригонометрии.
ЕГЭ 6. Равнобедренный треугольник, произвольный треугольник
В этом видео мы вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Также мы научимся решать и «обычные» треугольники. Убедимся в утверждении из прошлого урока — очень часто решение задач сводится к нескольким прямоугольным треугольникам.
ЕГЭ 16. Подобие треугольников. Задачи на доказательство
Итак, задача 16 профильного ЕГЭ. Подобие треугольников. Это одна из самых сложных задачи в профильном ЕГЭ.
Полные 3 балла за эту задачу получают менее 1% выпускников! Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства.
Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.
В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.
Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.
Вы научитесь также применять подобие треугольников не только для доказательств, а и для расчётных задач.
Общие сведения
Любое пространство можно описать размерностью. В трёхмерном измерении плоская геометрическая фигура, состоящая из трёх отрезков и такого же количества точек, в которых они соединяются, называется треугольником. Отрезки называют сторонами или боковыми гранями, площадь, ограниченная ими — внутренней, а точки — вершинами. Фигура имеет 3 угла и является невырожденной.
Строгого требования к обозначениям элементов многоугольника нет. Но традиционно вершины подписывают заглавными буквами латинского алфавита A, B, C, а противолежащие им стороны — аналогичными строчными знаками. В качестве обозначений для углов используют греческие символы: α, β, γ. Например, если имеется треугольник ABC, у него будут углы A, B, C и стороны a, b, c. Боковые грани могут подписываться и как отрезки, тогда в их имени учитываются ограничивающие точки. Например, AB, BC, CA.
В зависимости от соотношения размеров сторон, все треугольники разделяют на 3 вида. Они бывают:
Существуют правила, позволяющие утверждать о равенстве или подобии двух и более треугольников. Они считаются идентичными, то есть их параметры полностью совпадают, если 2 стороны и угол равны или все грани имеют одинаковую длину. А также фигуры будут одинаковыми, когда у них совпадают 2 стороны и угол, располагающийся напротив большего отрезка.
Признаки подобия помогают определить вид треугольника при сравнении с известным. Если 2 любых угла равны в обеих фигурах, они считаются похожими. Когда же 2 стороны многоугольника пропорциональны двум отрезкам другого, причём углы, заключённые между этими гранями, равны, такие фигуры подобны.
Особые линии и точки
Медиана, высота и биссектриса — 3 замечательные линии любого треугольника. Представляют они собой внутренние отрезки, построенные из углов на противоположные стороны. Линия, соединяющая вершину с серединой противоположной грани, называется медианой. Луч, разделяющий угол на 2 равные части — это биссектриса, а перпендикуляр, построенный к стороне — высота.
В любом правильном треугольнике можно начертить 3 отрезка. Если отложить медиану, а потом биссектрису и высоту, можно заметить, что эти линии совпадут. Эта особенность и есть замечательным свойством равностороннего многоугольника, то есть если в любой другой трёхугольной фигуре можно построить 12 особых линий, то в рассматриваемом только 3.
Доказать это утверждение можно следующим образом: пусть имеется треугольник АВС, в котором проведена высота ВH. Далее, рассуждения нужно построить так:
Если создать зеркальное отражение треугольнику и совместить его с оригинальным, все углы попарно совместятся. Совпадут и стороны. Так как ВH — высота, она перпендикуляр. Значит, в точке H отрезок образует прямой угол с боковой гранью AC. Отсюда следует, что образованные треугольники AHB и CBH прямоугольные.
Они являются равными по общей гипотенузе и острому углу. Это следует из того, что правильный многоугольник — частный случай равнобедренного. Так как треугольники совпадают, у них одинаковые углы ABH и CBH. Причём они смежные, поэтому BH — биссектриса. В то же время точка H делит AC на 2 равных отрезка, значит, BH — медиана.
Точка, в которой пересекаются отрезки, будет центром тяжести фигуры. Её особенность в том, что она разделяет эту линию на 2 части в отношении 2 к 1, если считать от угла. Кроме этого, из-за равенства медианы и биссектрисы эта точка будет и ортоцентром.
Основные формулы
Для каждого треугольника существует набор формул, с помощью которых можно определить его элементы. Чаще всего приходится выяснять длины сторон, площадь, высоты и периметр. При этом если известны боковые грани, можно найти практически любые остальные параметры.
Вокруг правильной фигуры можно описать круг, причём окружность можно и вписать в середину. Что интересно, их центры совпадут между собой и с местом пересечения высот. В этом случае радиус внешнего круга равняется R = (a * √3) / 3 = a / 2 * sin (a), а внутреннего: r = (a * √3) / 6 = R / 2. Чтобы найти высоту, зная радиус, используют выражение: h = (3 *R) / 2. Кроме этой формулы, довольно часто применяют равенство, связывающее сторону и перпендикуляр: h = (a * √3) / 2.
Доказательство верности формулы для нахождения радиуса вписанной окружности можно построить исходя из выражения, справедливого к равнобедренной фигуре: r = b / 2 √((2 a — b) / (2 a + b)). Так как стороны равны, то a = b. Получается, что r = a / 2 √(2a — a) / (2a + a) = (a / 2) * √(1 / 3) = a / (2 * √3) = (a √3) / 6.
Из других существующих формул можно перечислить те, что чаще всего применяют при решении примеров:
Существуют ещё 2 значимые теоремы: косинусов и синусов. Согласно первой, квадрат стороны фигуры будет ранятся удвоенному произведению двух оставшихся отрезков и косинусу угла между ними, отнятому из суммы квадратов: a 2 = b 2 + c 2 — 2 * b * c * cos (a). Согласно же второй, длины отрезков пропорциональны синусам углов, лежащих напротив: a / sin (a) = b / sin (b) = c / sinс.
Решение задач
Чтобы уметь решать различные задания, связанные с треугольником, нужно помнить всего несколько формул. Но понадобится знать, что углы в фигуре равны друг другу и составляют 60 градусов. Часто придётся применять и теорему Пифагора. Вот некоторые из типовых заданий, используемые при обучении школьников в седьмом классе:
Проверить правильность решения, возможно, используя онлайн-калькуляторы. Это сервисы, которые предлагают бесплатно вычислить элементы правильной фигуры. При этом от пользователя требуется лишь внести в специальную форму исходные данные и нажать кнопку «Рассчитать».
Следует отметить, что выучить наизусть все формулы сложно, поэтому обычно используют логическое мышление и теоремы синусов-косинусов. Учитывая, что любой угол в равностороннем треугольнике равен 60 градусов практически любую формулу вывести можно самостоятельно.
Свойства равностороннего треугольника
Основные свойства равностороннего треугольника непосредственно следуют из свойств равнобедренного треугольника, частным случаем которого он является.
Свойства равностороннего треугольника
2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают:
AK — высота, медиана и биссектриса, проведённые к стороне BC;
BF — высота, медиана и биссектриса, проведённые к стороне AC;
CD — высота, медиана и биссектриса, проведённые к стороне AB.
Длины всех трёх высот (медиан, биссектрис) равны между собой:
Если a — сторона треугольника, то
3) Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).
4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин:
5) Расстояние от точки пересечения высот, биссектрис и медиан
до любой вершины треугольника равно радиусу описанной окружности:
6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности:
7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе: R+r=BF.
8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности:
Равносторонний треугольник | |
---|---|
Тип | Правильный многоугольник |
Ребра и вершины | 3 |
Символ Шлефли | |
Диаграмма Кокстера | |
Группа симметрии | D 3 |
Площадь | 3 4 а 2 <\ displaystyle <\ tfrac <\ sqrt <3>> <4>> а ^ <2>> |
Внутренний угол ( градусы ) | 60 ° |
СОДЕРЖАНИЕ
Основные свойства
Многие из этих величин имеют простую связь с высотой («h») каждой вершины с противоположной стороны:
В равностороннем треугольнике высота, биссектриса угла, середина перпендикуляра и медиана каждой стороны совпадают.
Характеристики
Стороны
Полупериметр
Площадь
Circumradius, inradius и exradii
Равные чевианы
Три вида чевианов совпадают и равны для равносторонних треугольников (и только для них):
Совпадающие центры треугольников
Шесть треугольников, образованных разбиением медианами
Для любого треугольника три медианы делят его на шесть меньших треугольников.
Очки в плоскости
Известные теоремы
Наглядное доказательство теоремы Вивиани
1. | Показаны ближайшие расстояния от точки P до сторон равностороннего треугольника ABC. |
2. | Линии DE, FG и HI, параллельные AB, BC и CA соответственно, определяют меньшие треугольники PHE, PFI и PDG. |
3. | Поскольку эти треугольники равносторонние, их высоту можно повернуть вертикально. |
4. | Поскольку PGCH представляет собой параллелограмм, треугольник PHE можно сдвинуть вверх, чтобы показать, что высота суммируется с высотой треугольника ABC. |
Теорема Морли о трехсекторах утверждает, что в любом треугольнике три точки пересечения смежных трехугольников образуют равносторонний треугольник.
Теорема Наполеона утверждает, что если равносторонние треугольники построены на сторонах любого треугольника, либо все наружу, либо все внутрь, центры этих равносторонних треугольников сами образуют равносторонний треугольник.
Версия изопериметрического неравенства для треугольников гласит, что треугольник наибольшей площади среди всех треугольников с заданным периметром является равносторонним.
Прочие свойства
По неравенству Эйлера равносторонний треугольник имеет наименьшее отношение R / r радиуса описанной окружности к внутреннему радиусу любого треугольника: в частности, R / r = 2.
Треугольник наибольшей площади из всех вписанных в данный круг равносторонний; и треугольник наименьшей площади из всех описанных вокруг данного круга является равносторонним.
Существует множество неравенств треугольника, которые выполняются с равенством тогда и только тогда, когда треугольник равносторонний.
Геометрическая конструкция
Вывод формулы площади
Формула площади в терминах длины стороны a может быть получена непосредственно с помощью теоремы Пифагора или с помощью тригонометрии. А знак равно 3 4 а 2 <\ displaystyle A = <\ frac <\ sqrt <3>> <4>> a ^ <2>>
Использование теоремы Пифагора
Площадь треугольника равна половине одной стороны а раз превышает высоту ч с той стороны:
Подстановка h в формулу площади (1/2) ah дает формулу площади равностороннего треугольника:
Использование тригонометрии
Каждый угол равностороннего треугольника равен 60 °, поэтому
так как все стороны равностороннего треугольника равны.
В культуре и обществе
Равносторонние треугольники часто появлялись в рукотворных конструкциях: