как распределяются ip адреса

Распределение ip-адресов

Вы читаете краткое руководство по IP-адресации. Как происходит распределение ip-адресов и их управление?
Управление IP-адресами осуществляется управлением по присвоению номеров в Интернете (IANA), которое несет общую ответственность за пул адресов Интернет-протокола (IP), и региональными интернет-регистратурами (RIR), которым IANA распределяет большие блоки адресов. как распределяются ip адреса. iana. как распределяются ip адреса фото. как распределяются ip адреса-iana. картинка как распределяются ip адреса. картинка iana.

RIR управляют, распределяют и публично регистрируют IP-адреса и соответствующие ресурсы номеров Интернета, такие как номера автономной системы (ASN) и обратные делегирования системы доменных имен (DNS) в своих соответствующих регионах. Они делают это в соответствии с политиками, которые разрабатываются в их соответствующих региональных сообществах, посредством открытых и восходящих процессов.

Региональные интернет-регистраторы

В настоящее время существует пять RIR между которыми происходит распределение ip-адресов:

Пять RIR вместе образуют также организацию номерных ресурсов (NRO), которая осуществляет совместную деятельность RIR, включая совместные технические проекты, мероприятия по связи и координацию политики.

Как распределяются адреса IPv6?

Pv6 или Internet Protocol version 6 — так обозначается новая версия интернет протокола (IP), призванная решить проблемы, с которыми столкнулась предыдущая версия (IPv4) при её использовании в Интернете, за счёт использования длины адреса 128 бит вместо 32.

Адреса IPv4 и IPv6 выделяются тем, кто обращается с просьбой, что им нужны адреса для их сетей. То есть компания, занимающаяся созданием сайтов, решила настроить на своих сайтах геолокацию, в связи с этим просит у RIPE базу адресов для своей деятельности. Все это, разумеется, предоставляется совершенно бесплатно.

Но разве адреса не должны распределяться по географическому принципу, чтобы обеспечить справедливое распределение?

По техническим причинам распределение IP-адресов должно соответствовать топологии сети, а не географии или национальным границам.

Поэтому адреса выделяются для использования в конкретных сетях, так как они необходимы. RIR распределяют IP-адреса, используя разработанные сообществом политики, разработанные для обеспечения того, чтобы распределение было справедливым и равным.

В первые дни Интернета метод распределения IP-адресов был менее формальным, в результате чего некоторые организации получали непропорционально большие диапазоны адресов.

RIR были сформированы, чтобы обеспечить лучший способ распределения адресов. Они добились успеха в разработке справедливой и равноправной политики распределения. Они также помогли обеспечить стабильность пула адресов и таблиц маршрутизации в течение длительного периода быстрого роста.

Что происходит, когда заканчиваются адреса IPv4?

Интернет в его нынешнем виде уже есть. Согласно организации номерных ресурсов, в мире официально закончились адреса IPv4 в феврале 2011 года.

Единственный вариант теперь состоит в том, чтобы разделить выделенные свойства на более мелкие части или начать торговать тем, что уже было назначено — оба эти действия могут усложнить и поставить под угрозу вашу конфиденциальность.

IPv6 — это следующее поколение стандарта IP-адресов, которое дополнит и в конечном итоге заменит IPv4, протокол, который многие интернет-службы используют до сих пор.

Deploy360 предоставляет практическую информацию о техническом развертывании операторам сетей, отвечающим за внедрение новых технологий и стандартов в своих собственных сетях.

Источник

IP-адресация

Для того, чтобы компьютер мог участвовать в сетевом взаимодействии с помощью протокола IP, ему должен быть обязательно присвоен уникальный IP-адрес.

Классы IP-адресов

Существует 5 классов IP-адресов – A, B, C, D, E. Принадлежность IP-адреса к тому или иному классу определяется значением первого октета (W). Ниже показано соответствие значений первого октета и классов адресов.

Класс IP-адресаABCDE
Диапазон первого октета1-126128-191192-223224-239240-247

IP-адреса первых трех классов предназначены для адресации отдельных узлов и отдельных сетей. Такие адреса состоят из двух частей – номера сети и номера узла. Такая схема аналогична схеме почтовых индексов – первые три цифры кодируют регион, а остальные – почтовое отделение внутри региона.

Преимущества двухуровневой схемы очевидны: она позволяет, во-первых, адресовать целиком отдельные сети внутри составной сети, что необходимо для обеспечения маршрутизации, а во-вторых – присваивать узлам номера внутри одной сети независимо от других сетей. Естественно, что компьютеры, входящие в одну и ту же сеть должны иметь IP-адреса с одинаковым номером сети.

Объединенная сеть. Номера узлов и номера сетей

В случае если два компьютера имеют IP-адреса с разными номерами сетей (даже если они принадлежат одной физической сети), то они не смогут общаться друг с другом напрямую: для их взаимодействия необходим маршрутизатор (см. раздел IP-маршрутизация).

IP-адреса разных классов отличаются разрядностью номеров сети и узла, что определяет их возможный диапазон значений. Следующая таблица отображает основные характеристики IP-адресов классов A,B и C.

ХарактеристикаКласс
ABC
Номер сетиWW.XW.X.Y
Номер узлаX.Y.ZY.ZZ
Возможное количество сетей12616 3842 097 151
Возможное количество узлов16 777 21465 534254
Особые адреса
Запись адреса сети в целомW.0.0.0W.X.0.0W.X.Y.0
Широковещательный адрес в сетиW.255.255.255W.X.255.255W.X.Y.255

Например, IP-адрес 213.128.193.154 является адресом класса C, и принадлежит узлу с номером 154, расположенному в сети 213.128.193.0.

Схема адресации, определяемая классами A, B, и C, позволяет пересылать данные либо отдельному узлу, либо всем компьютерам отдельной сети (широковещательная рассылка). Однако существует сетевое программное обеспечение, которому требуется рассылать данные определенной группе узлов, необязательно входящих в одну сеть. Для того чтобы программы такого рода могли успешно функционировать, система адресации должна предусматривать так называемые групповые адреса. Для этих целей используются IP-адреса класса D.

Диапазон адресов класса E зарезервирован и в настоящее время не используется.

Двоичная форма записи IP-адресов

Наряду с традиционной десятичной формой записи IP-адресов, может использоваться и двоичная форма, отражающая непосредственно способ представления адреса в памяти компьютера. Поскольку IP-адрес имеет длину 4 байта, то в двоичной форме он представляется как 32-разрядное двоичное число (т.е. последовательность из 32 нулей и единиц). Например, адрес 213.128.193.154 в двоичной форме имеет вид 11010101 1000000 11000001 10011010. Используя двоичную форму записи IP-адреса, легко определить схемы классов IP адресов:

Двоичные схемы IP-адресов классов A, B, C, D и E

Особые IP-адреса

Протокол IP предполагает наличие адресов, которые трактуются особым образом. К ним относятся следующие:


    1. Адреса, значение первого октета которых равно 127. Пакеты, направленные по такому адресу, реально не передаются в сеть, а обрабатываются программным обеспечением узла-отправителя. Таким образом, узел может направить данные самому себе. Этот подход очень удобен для тестирования сетевого программного обеспечения в условиях, когда нет возможности подключиться к сети.

2. Адрес 255.255.255.255. Пакет, в назначении которого стоит адрес 255.255.255.255, должен рассылаться всем узлам сети, в которой находится источник. Такой вид рассылки называется ограниченным широковещанием. В двоичной форме этот адрес имеет вид 11111111 11111111 11111111 11111111.

3. Адрес 0.0.0.0. Он используется в служебных целях и трактуется как адрес того узла, который сгенерировал пакет. Двоичное представление этого адреса 00000000 00000000 00000000 00000000

Дополнительно особым образом интерпретируются адреса:

Использование масок для IP-адресации

Схема разделения IP-адреса на номер сети и номер узла, основанная на понятии класса адреса, является достаточно грубой, поскольку предполагает всего 3 варианта (классы A, B и C) распределения разрядов адреса под соответствующие номера. Рассмотрим для примера следующую ситуацию. Допустим, что некоторая компания, подключающаяся к Интернет, располагает всего 10-ю компьютерами. Поскольку минимальными по возможному числу узлов являются сети класса C, то эта компания должна была бы получить от организации, занимающейся распределением IP-адресов, диапазон в 254 адреса (одну сеть класса C). Неудобство такого подхода очевидно: 244 адреса останутся неиспользованными, поскольку не могут быть распределены компьютерам других организаций, расположенных в других физических сетях. В случае же, если рассматриваемая организация имела бы 20 компьютеров, распределенных по двум физическим сетям, то ей должен был бы выделяться диапазон двух сетей класса C (по одному для каждой физической сети). При этом число «мертвых» адресов удвоится.

Для более гибкого определения границ между разрядами номеров сети и узла внутри IP-адреса используются так называемые маски подсети. Маска подсети – это 4-байтовое число специального вида, которое используется совместно с IP-адресом. «Специальный вид» маски подсети заключается в следующем: двоичные разряды маски, соответствующие разрядам IP-адреса, отведенным под номер сети, содержат единицы, а в разрядах, соответствующих разрядам номера узла – нули.

Маска подсети обязательно указывается при настройке программного модуля протокола IP на каждом компьютере вместе с IP-адресом

Для стандартного деления IP-адресов на номер сети и номер узла, определенного классами A, B и C маски подсети имеют вид:

КлассДвоичная формаДесятичная форма
A11111111 00000000 00000000 00000000255.0.0.0
В11111111 11111111 00000000 00000000255.255.0.0
С11111111 11111111 11111111 00000000255.255.255.0

Распределение IP-адресов

Поскольку каждый узел сети Интернет должен обладать уникальным IP-адресом, то, безусловно, важной является задача координации распределения адресов отдельным сетям и узлам. Такую координирующую роль выполняет Интернет Корпорация по распределению адресов и имен (The Internet Corporation for Assigned Names and Numbers, ICANN).

Источник

Система учета IP-адресов

как распределяются ip адреса. image loader. как распределяются ip адреса фото. как распределяются ip адреса-image loader. картинка как распределяются ip адреса. картинка image loader.

В своей практической деятельности нам довольно часто приходится сталкиваться с проблемой рационального распределения блоков IP-адресов. Распределение адресов между тысячами клиентов представляет собой достаточно сложную задачу. В этой статье мы бы хотели поделиться собственным опытом ее решения.

Немного о принципах IP-адресации

Прежде чем говорить о проблемах деления адресного пространства, вспомним основные принципы IPv4-адресации. IPv4-адрес представляет собой набор из 32 бит (единиц и нулей). Человеку прочесть и запомнить двоичный IP-адрес достаточно сложно. Поэтому 32 бита разделяются на четыре байта — так называемые октеты. Чтобы облегчить понимание, все октеты записываются в десятичной форме. Каждый IPv4-адрес состоит из двух частей: первая идентифицирует сеть, а вторая — узел в сети. Такая адресация называется иерархической: первая часть адреса идентифицирует всю сеть, в которой находятся все уникальные адреса. Маршрутизаторам нужно знать лишь путь к каждой сети, а не расположение отдельных узлов.

Чтобы узлы могли определить, где находится сетевая часть, а где — адрес узла, используется маска подсети. Маска подсети присваивается узлу одновременно с IP-адресом.Она представляет собой набор из 32 бит, в котором единицы соответствуют сетевой части, а нули — адресу узла. Сегодня широкое распространение получила запись IP-адресов в так называеой префиксной, или CIDR-нотации. Маска в такой записи указывается в виде числа после косой черты. Например, маска 255.255.255.0 в двоичном виде будет выглядеть так: 11111111.11111111.11111111.00000000. Количество единиц равняется 24, а маска записывается как /24.

Проблемы ручного выделения

Во многих организациях выделение IP-адресов осуществляется вручную, без использования каких-либо специализированных программных средств. Ручное выделение рано или поздно приводит к путанице с адресацией. Во-первых, ручное выделение неизбежно приводит к фрагментации: клиентам предоставляется много мелких подсетей, из-за чего становится невозможным выделить подсеть большего размера.

Во-вторых, необходимость выделять подсети разных размеров тоже приводит к различным трудностям.В качестве примера возможной проблемной ситуации можно привести случай, когда клиенту выделяется подсеть /27 или /28, из которой уже выделен блок /29. Можно ли как-то автоматизировать процесс выделения адресов, чтобы вообще избежать ошибок? Размышляя над этим вопросом, мы нашли свое решение, которое отлично работает благодаря хорошей визуализации.

Дерево интервалов и таблица свободных подсетей

Для поиска свободных подсетей мы используем дерево интервалов. С его помощью можно находить интервалы, пересекающиеся с заданным интервалом или точкой. IP-адрес можно представить в виде десятичного числа, так что мы можем без труда определить границы пула и представить все занятые подсети в виде отрезков на большом интервале.

Алгоритм поиска свободной подсети можно описать так. Предположим, что клиент просит выделить подсеть /27. Сначала нужно убедиться в том, что имеющийся пул по размеру больше, чем эта подсеть. Если он по размеру меньше, то нужно будет либо взять другой пул, либо сообщить клиенту об отсутствии свободных подсетей нужного размера. Если пул по размеру больше запрашиваемой подсети, то мы начинаем двигаться от начала пула отрезками размером в требуемую подсеть (ее размер равен 2^(32-x), где x — префикс подсети).

Используя ранее построенное дерево интервалов, мы можем быстро определить, перекрывает ли нужная клиенту подсеть, представленная в виде интервала, ранее выделенные подсети. Подсеть 127.0.0.0/27 в нашем примере перекрывает одну выделенную подсеть /29. Затем берется интервал, следующий за ней — 127.0.0.32/27. Мы проверяем его на пересечение с другими, и он оказывается свободен. После этого он предоставляется клиенту и помечается как занятый. Вся информация о свободных подсетях наглядно отображается в виде следующей таблице (зеленым цветом обозначены свободные подсети, синим — занятые, а серым — подсети, которые содержат уже занятые подсети более мелкого размера и поэтому не могут быть использованы):

как распределяются ip адреса. image loader. как распределяются ip адреса фото. как распределяются ip адреса-image loader. картинка как распределяются ip адреса. картинка image loader.

Чтобы ускорить поиск свободной подсети в пулах большого размера, можно проходить интервал циклом с разных сторон. Однако в таком случае масштабы фрагментации будут больше, и могут возникнуть проблемы с выделением крупных подсетей. Если мы нашли пересечение с подсетью большего размера (по сравнению с запрошенной клиентом), то мы можем следующий шаг цикла начать с ее конца, так как внутри этого интервала все равно отсутствуют свободные подсети.

Заключение

Предлагаемое нами решение по распределению IP-адресов делает управление адресным пространством более простым и, что немаловажно, более рациональным.

Конечно, его нельзя считать идеальным. Вопрос о рациональном и эффективном распределении адресного пространства остается открытым. Было бы интересно услышать от вас замечания и предложения по улучшению нашего подхода, а также ознакомиться с другими вариантами решения описываемой проблемы.

Читателей, не имеющих возможности комментировать посты на Хабре, приглашаем к нам в блог.

Источник

Всё об IP адресах и о том, как с ними работать

Доброго времени суток, уважаемые читатели Хабра!

Не так давно я написал свою первую статью на Хабр. В моей статье была одна неприятная шероховатость, которую моментально обнаружили, понимающие в сетевом администрировании, пользователи. Шероховатость заключается в том, что я указал неверные IP адреса в лабораторной работе. Сделал это я умышленно, так как посчитал что неопытному пользователю будет легче понять тему VLAN на более простом примере IP, но, как было, совершенно справедливо, замечено пользователями, нельзя выкладывать материал с ключевой ошибкой.

В самой статье я не стал править эту ошибку, так как убрав её будет бессмысленна вся наша дискуссия в 2 дня, но решил исправить её в отдельной статье с указание проблем и пояснением всей темы.

Для начала, стоит сказать о том, что такое IP адрес.

IP-адрес — уникальный сетевой адрес узла в компьютерной сети, построенной на основе стека протоколов TCP/IP (TCP/IP – это набор интернет-протоколов, о котором мы поговорим в дальнейших статьях). IP-адрес представляет собой серию из 32 двоичных бит (единиц и нулей). Так как человек невосприимчив к большому однородному ряду чисел, такому как этот 11100010101000100010101110011110 (здесь, к слову, 32 бита информации, так как 32 числа в двоичной системе), было решено разделить ряд на четыре 8-битных байта и получилась следующая последовательность: 11100010.10100010.00101011.10011110. Это не сильно облегчило жизнь и было решение перевести данную последовательность в, привычную нам, последовательность из четырёх чисел в десятичной системе, то есть 226.162.43.158. 4 разряда также называются октетами. Данный IP адрес определяется протоколом IPv4. По такой схеме адресации можно создать более 4 миллиардов IP-адресов.

Максимальным возможным числом в любом октете будет 255 (так как в двоичной системе это 8 единиц), а минимальным – 0.

Далее давайте разберёмся с тем, что называется классом IP (именно в этом моменте в лабораторной работе была неточность).

IP-адреса делятся на 5 классов (A, B, C, D, E). A, B и C — это классы коммерческой адресации. D – для многоадресных рассылок, а класс E – для экспериментов.

Класс А: 1.0.0.0 — 126.0.0.0, маска 255.0.0.0
Класс В: 128.0.0.0 — 191.255.0.0, маска 255.255.0.0
Класс С: 192.0.0.0 — 223.255.255.0, маска 255.255.255.0
Класс D: 224.0.0.0 — 239.255.255.255, маска 255.255.255.255
Класс Е: 240.0.0.0 — 247.255.255.255, маска 255.255.255.255

Теперь о «цвете» IP. IP бывают белые и серые (или публичные и частные). Публичным IP адресом называется IP адрес, который используется для выхода в Интернет. Адреса, используемые в локальных сетях, относят к частным. Частные IP не маршрутизируются в Интернете.

Публичные адреса назначаются публичным веб-серверам для того, чтобы человек смог попасть на этот сервер, вне зависимости от его местоположения, то есть через Интернет. Например, игровые сервера являются публичными, как и сервера Хабра и многих других веб-ресурсов.
Большое отличие частных и публичных IP адресов заключается в том, что используя частный IP адрес мы можем назначить компьютеру любой номер (главное, чтобы не было совпадающих номеров), а с публичными адресами всё не так просто. Выдача публичных адресов контролируется различными организациями.

Допустим, Вы молодой сетевой инженер и хотите дать доступ к своему серверу всем пользователям Интернета. Для этого Вам нужно получить публичный IP адрес. Чтобы его получить Вы обращаетесь к своему интернет провайдеру, и он выдаёт Вам публичный IP адрес, но из рукава он его взять не может, поэтому он обращается к локальному Интернет регистратору (LIR – Local Internet Registry), который выдаёт пачку IP адресов Вашему провайдеру, а провайдер из этой пачки выдаёт Вам один адрес. Локальный Интернет регистратор не может выдать пачку адресов из неоткуда, поэтому он обращается к региональному Интернет регистратору (RIR – Regional Internet Registry). В свою очередь региональный Интернет регистратор обращается к международной некоммерческой организации IANA (Internet Assigned Numbers Authority). Контролирует действие организации IANA компания ICANN (Internet Corporation for Assigned Names and Numbers). Такой сложный процесс необходим для того, чтобы не было путаницы в публичных IP адресах.

как распределяются ip адреса. image loader. как распределяются ip адреса фото. как распределяются ip адреса-image loader. картинка как распределяются ip адреса. картинка image loader.

Поскольку мы занимаемся созданием локальных вычислительных сетей (LAN — Local Area Network), мы будем пользоваться именно частными IP адресами. Для работы с ними необходимо понимать какие адреса частные, а какие нет. В таблице ниже приведены частные IP адреса, которыми мы и будем пользоваться при построении сетей.

как распределяются ip адреса. image loader. как распределяются ip адреса фото. как распределяются ip адреса-image loader. картинка как распределяются ip адреса. картинка image loader.

Из вышесказанного делаем вывод, что пользоваться при создании локальной сеть следует адресами из диапазона в таблице. При использовании любых других адресов сетей, как например, 20.*.*.* или 30.*.*.* (для примера взял именно эти адреса, так как они использовались в лабе), будут большие проблемы с настройкой реальной сети.

Из таблицы частных IP адресов вы можете увидеть третий столбец, в котором написана маска подсети. Маска подсети — битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети.

У всех IP адресов есть две части сеть и узел.
Сеть – это та часть IP, которая не меняется во всей сети и все адреса устройств начинаются именно с номера сети.
Узел – это изменяющаяся часть IP. Каждое устройство имеет свой уникальный адрес в сети, он называется узлом.

Маску принято записывать двумя способами: префиксным и десятичным. Например, маска частной подсети A выглядит в десятичной записи как 255.0.0.0, но не всегда удобно пользоваться десятичной записью при составлении схемы сети. Легче записать маску как префикс, то есть /8.

Так как маска формируется добавлением слева единицы с первого октета и никак иначе, но для распознания маски нам достаточно знать количество выставленных единиц.

Таблица масок подсети

как распределяются ip адреса. image loader. как распределяются ip адреса фото. как распределяются ip адреса-image loader. картинка как распределяются ip адреса. картинка image loader.

Высчитаем сколько устройств (в IP адресах — узлов) может быть в сети, где у одного компьютера адрес 172.16.13.98 /24.

172.16.13.0 – адрес сети
172.16.13.1 – адрес первого устройства в сети
172.16.13.254 – адрес последнего устройства в сети
172.16.13.255 – широковещательный IP адрес
172.16.14.0 – адрес следующей сети

Итого 254 устройства в сети

Теперь вычислим сколько устройств может быть в сети, где у одного компьютера адрес 172.16.13.98 /16.

172.16.0.0 – адрес сети
172.16.0.1 – адрес первого устройства в сети
172.16.255.254 – адрес последнего устройства в сети
172.16.255.255 – широковещательный IP адрес
172.17.0.0 – адрес следующей сети

Итого 65534 устройства в сети

В первом случае у нас получилось 254 устройства, во втором 65534, а мы заменили только номер маски.

Посмотреть различные варианты работы с масками вы можете в любом калькуляторе IP. Я рекомендую этот.

До того, как была придумана технология масок подсетей (VLSM – Variable Langhe Subnet Mask), использовались классовые сети, о которых мы говорили ранее.

Теперь стоит сказать о таких IP адресах, которые задействованы под определённые нужды.

Адрес 127.0.0.0 – 127.255.255.255 (loopback – петля на себя). Данная сеть нужна для диагностики.
169.254.0.0 – 169.254.255.255 (APIPA – Automatic Private IP Addressing). Механизм «придумывания» IP адреса. Служба APIPA генерирует IP адреса для начала работы с сетью.

Теперь, когда я объяснил тему IP, становиться ясно почему сеть, представленная в лабе, не будет работать без проблем. Этого стоит избежать, поэтому исправьте ошибки исходя из информации в этой статье.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *