как узнать арифметическую прогрессию
Арифметическая прогрессия свойства и формулы
Определение числовой последовательности
Числовая последовательность — это множество чисел, каждому из которых можно присвоить уникальный номер.
Последовательности можно задавать разными способами:
«Последовательность простых чисел: 4, 6, 10, 19, 21, 33. »
Последовательность yn = C называют постоянной или стационарной.
Арифметическая прогрессия — (an), задана таким соотношением:
a1 = a, an+1= an + d.
Последовательность Фибоначчи — когда каждое следующее число равно сумме двух предыдущих чисел: an+1 = an + an-1.
Пример: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.
Так как алгебраическая числовая последовательность — это частный случай числовой функции, то ряд свойств функций рассматриваются и для последовательностей.
Свойства числовых последовательностей:
Возрастающие и убывающие последовательности называют монотонными последовательностями.
Пример числовой последовательности выглядит так:
В такой математической последовательности каждый номер соответствует одному числу. Это значит, что в последовательности не может быть двух первых чисел и т.д. Первое число (как и любое другое) — всегда одно.
N-ный член алгебраической последовательности — это число с порядковым номером n.
Всю последовательность можно обозначить любой буквой латинского алфавита, например, a. Каждый член этой последовательности — той же буквой с индексом, который равен номеру этого члена: a1, a2. a10. an.
N-ый член последовательности можно задать формулой. Например:
Определение арифметической прогрессии
Так как числовая последовательность — это частный случай функции, которая определена на множестве натуральных чисел, арифметическую прогрессию можно назвать частным случаем числовой последовательности.
Рассмотрим основные определения и как найти арифметическую прогрессию.
Арифметическая прогрессия — это числовая последовательность a1, a2. an. для которой для каждого натурального n выполняется равенство: an+1= an + d, где d — это разность арифметической прогрессии. Описать словами эту формулу можно так: каждый член арифметической прогрессии равен предыдущему, сложенному с одним и тем же числом d. Разность между последующим и предыдущим членами, то есть разность арифметической прогрессии можно найти по формуле:
Если известны первый член a1 и n-ый член прогрессии, разность можно найти так:
Арифметическая прогрессия бывает трех видов: Пример: последовательность чисел 11, 14, 17, 20, 23. — это возрастающая арифметическая прогрессия, так как ее разность d = 3 > 0. Свойство арифметической прогрессии
Переведем с языка формул на русский: каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов. Что как раз объясняет название «арифметическая» прогрессия. Рассмотрим пример арифметической прогрессии. Дано: арифметическая прогрессия (an), где a1 = 0 и d = 2. Найти: первые пять членов прогрессии и десятый член прогрессии. Решение арифметической прогрессии: По условиям задачи n = 10, подставляем в формулу: Формулы арифметической прогрессииВ 9 классе проходят все формулы арифметической прогрессии. Давайте узнаем, какими способами ее можно задать: Сумма первых n членов арифметической прогрессии (аn) обозначается Sn:
Формулы нахождения суммы n членов арифметической прогрессии: Чтобы быстрее запомнить формулы можно использовать такую табличку с основными определениями:
Формула n-го члена арифметической прогрессииИз определения арифметической прогрессии следует, что равенство истинно:
Значит, Переведем с языка формул на русский: если мы знаем первый член и разность арифметической прогрессии, то можем найти любой ее член. Арифметическую прогрессию можно назвать заданной, если известен ее первый член и разность. Доказательство формулы n-го члена арифметической прогрессииФормулу n-го члена арифметической прогрессии можно доказать при помощи метода математической индукции. Пусть дано: Нужно доказать: Действительно, Согласно принципу математической индукции формула верна для любого натурального числа. Геометрическая прогрессияГеометрическая прогрессия — это последовательность (bn), в которой каждый последующий член можно найти, если предыдущий член умножить на одно и то же число q. Если последовательность (bn) является геометрической прогрессией, то для любого натурального значения n справедлива зависимость:
Если в геометрической прогрессии (bn) известен первый член b1 и знаменатель q, то можно найти любой член прогрессии: Общий член геометрической прогрессии bn можно вычислить при помощи формулы: Пример 1. 2, 6, 18, 54,… — геометрическая прогрессия b = 2, q = 3. Пример 3. 7, 7, 7, 7,… — геометрическая прогрессия b = 7, q = 1. Как вычислить арифметическую прогрессиюАрифметическая прогрессия — основные понятияАрифметическая прогрессия — это монотонная последовательность, которая состоит из ряда чисел. В этом ряду каждое последующее число есть результат добавления к предыдущему одного и того же числа d. В случае, если \(d\;>\;0,\) последовательность называется возрастающей, а если \(d\; — убывающей. В ситуации, если d = 0 последовательность стационарна. Наиболее простым примером арифметической прогрессии будет являться бесконечная последовательность натуральных чисел. Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут. Число d является разностью арифметической прогрессии или шагом, а числа последовательности — членами прогрессии. Последовательность \( Если говорить об арифметической прогрессии, то для всех n = 2, 3. справедливо: Вычисление каждого следующего члена арифметической прогрессии возможно с использованием следующей формулы: Формула общего члена для расчета любого из членов прогрессии выглядит следующим образом: Общий вид арифметической прогрессииАрифметической прогрессией называют числовую последовательность, которая имеет следующий вид: Каждую арифметическую прогрессию можно задать формулой вида: Свойства и формулы арифметической прогрессииРазность арифметической прогрессии вычисляется по следующей формуле: Существует несколько формул для нахождения членов арифметической прогрессии с номером n: В обоих случаях \(a_1\) будет обозначать первый член прогрессии, d здесь будет являться разностью прогрессии, а a_m обозначает член арифметической прогрессии с номером m. Сумма первых членов арифметической прогрессии вычисляется с использованием следующих формул: В данной формуле \(a_1\) является обозначением первого члена прогрессии, \(a_n\) — обозначением члена прогрессии с номером n, а n — обозначением суммируемых членов прогрессии. Дополнительно к предыдущим обозначениям в этой формуле d — это шаг прогрессии, а n — число суммируемых членов прогрессии. Вывод этой формулы выглядит следующим образом: Предоставим объяснение того, что выражения, заключенные в скобки, равны как между собой, так и выражению \(a_1 + a_n\) : Тогда мы можем записать: Из этого выводится формула, дающая в результате сумму первых n членов арифметической прогрессии: Еще одно свойство арифметической прогрессии — сходность. Арифметическая прогрессия будет являться расходящейся при \(d\;\neq0\) и сходящейся при d = 0. Арифметическая прогрессия второго порядкаПоследовательность чисел, при которой последовательность разностей образует арифметическую прогрессию, будет называться арифметической прогрессией второго порядка. Сумма квадратов арифметической прогрессииКак узнать арифметическую прогрессиюКод ОГЭ по математике: 4.2.1. Арифметическая прогрессия. Формула общего члена арифметической прогрессии. 4.2.2. Формула суммы первых нескольких членов арифметической прогрессии Определения и обозначенияОпределение. Арифметической прогрессией называют последовательность, каждый член которой, начиная со второго, получается прибавлением к предыдущему члену одного и того же числа. В арифметической прогрессии разность между любыми двумя соседними членами одна и та же. Эту разность называют разностью арифметической прогрессии и обозначают буквой d. Правило, по которому образуются члены арифметической прогрессии, можно записать в виде рекуррентной формулы: аn+1 – an = d. Или иначе: an+1 = an + d.Пример 1. В арифметической прогрессии 1; 3; 5; 7; 9; 11; … разность положительна: d = 3 – 1 = 2. В этой последовательности каждый следующий член больше предыдущего; такую последовательность называют возрастающей. Пример 2. В арифметической прогрессии 100; 90; 80; 70; 60; … разность отрицательна: d = 90 – 100 = –10. Каждый следующий член этой последовательности меньше предыдущего, и поэтому последовательность называют убывающей. Свойство арифметической прогрессии. Любой член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов: Формулы n–го члена арифметической прогрессииФормула n–го члена арифметической прогрессии (аn), первый член которой равен а1 и разность равна d: аn = а1 + d(n – 1).Формула содержит четыре переменные. Если известны значения трёх из них, то можно вычислить и значение четвёртой. Убедитесь в этом, решив следующие четыре задачи (в каждом случае укажите, какие переменные известны, и получите ответ): В данной прогрессии а1 = 1,5 и d = 4,5 – 1,5 = 3. Составим формулу n–го члена: аn = 1,5 + 3(n – 1), т.е. аn = 3n – 1,5. Найдём значения n, при которых выполняется условие аn > 1000. Для этого решим неравенство 3n – 1,5 > 1000; n > 333. Таким образом, члены данной прогрессии превосходят 1000, начиная с члена, номер которого равен 334. (Для самопроверки можно вычислить а334: имеем a334 = 3 • 334 – 1,5 = 1000,5). Способ 1. Выразив а15 и a20 через а1 и d, составим систему уравнений: Решив её, найдём, что а1 = 138, d = –7. (Получите этот результат самостоятельно.) Воспользовавшись формулой n–го члена, найдём a30, a именно: а30 = 138 – 7 • 29 = –65. Способ 2. Выразим а20 через а15 и d: a20 = а15 + 5d. Подставив значения а20 и а15, получим: 5 = 40 + 5d, откуда d = –7. Теперь найдём а30. Это можно сделать, например, так: При решении задачи вторым способом мы воспользовались приёмом, основанным на следующим утверждении: если последовательность (аn) – арифметическая прогрессия, то для любых натуральных n и m верно равенство: аn = аm + (n – m)d.Если вы эту формулу забудете, то в каждом конкретном случае можно выразить один член прогрессии через другой, выполнив несложные преобразования. Например, выразим а20 через а5: Изображение членов арифметической прогрессии |