как узнать был ли пожар в доме

Пожар в квартире

Правила поведения

Обнаружив пожар, необходимо немедленно вызвать пожарных. Это следует сделать из безопасного места: соседней квартиры или уличного таксофона. Набрать номер дежурной службы МЧС «101» и сообщить следующие сведения:

• Адрес, где обнаружено загорание или пожар;

• Объект, где происходит пожар: во дворе, в квартире, в школе, на складе и т.д.;

• Что конкретно горит: телевизор, мебель, автомобиль;

Если диспетчер попросит, то уточнить: номер дома, подъезда, квартиры, на каком этаже горит, сколько этажей в здании, откуда удобнее подъехать, код для входа в подъезд, есть ли опасность для людей и т.д.

• Сообщить свою фамилию и телефон.

Говорите по телефону четко и спокойно, не торопись. Важно понимать, что пока вы сообщаешь о пожаре, пожарно-спасательные подразделения уже подняты по тревоге и следуют к месту вызова.

Выйдя из дома, встречай пожарную машину, показывай самый быстрый и удобный проезд к месту возникшего пожара. Учтите, что профессионалам гораздо легче потушить огонь в самом начале; не заставляй их рисковать своими жизнями на большом пожаре из-за твоего промедления.

Не рискуй своей жизнью и жизнью соседей, как можно быстрее вызывай пожарных. Если в твоей квартире нет телефона, оповести соседей и попроси их срочно позвонить по телефону «101». Если обнаружили небольшое загорание, но не смогли его ликвидировать сразу же своими силами, немедленно звони в дежурную службу МЧС. В данном случае лучше перестраховаться и вызвать профессионалов, чем самому бороться с разрастающимся пожаром.

Если пожар в твоей квартире?

Плотно закрыв за собой все двери, можно задержать распространение огня из горящей комнаты на 10-15 минут, а этого времени достаточно, чтобы смогли покинуть дом твои родные и соседи, даже пожилые.

Бывают случаи, когда загорание возникает прямо на глазах, и человек имеет некоторое время, чтобы не только не дать возможность распространиться огню, но и ликвидировать горение. Это опасная ситуация, к которой нужно быть готовым морально и физически. При этом необходимо помнить, что:

во-первых, выделяющийся дым очень вреден, от него нельзя защититься, даже если дышать через сырую тряпку (в густом дыму человек теряет сознание после нескольких вдохов);

во-вторых, горение может происходить настолько быстро, что человек имеет всего несколько минут на то, чтобы только успеть закрыть окна, двери и самому покинуть помещение;

в-третьих, даже при успешном тушении не теряйте из виду путь к своему отступлению, внимательно следите за тем, чтобы выход оставался свободным и незадымленным. В конечном итоге, ваша жизнь, жизнь родных и соседей гораздо дороже всего того, что есть в квартире и в доме.

Несколько примеров того, как можно справиться с небольшим очагом горения.

Помни о токсичности дыма!

Небольшое пламя на обесточенном телевизоре можно залить водой, но при этом надо находиться сзади или сбоку от телевизора во избежание травм при возможном взрыве кинескопа.

Когда воду использовать нельзя (горящий электроприбор находится под напряжением) или ее нет, то небольшой очаг горения можно попытаться засыпать питьевой или кальцинированной содой, стиральным порошком, песком, землей (например, из цветочного горшка). Однако при неудаче надо сразу же покинуть помещение.

Если загорание произошло в ваше отсутствие и момент для быстрого тушения (1-2 минуты) упущен, не тратьте время, бегите прочь из дома, из квартиры (плотно закройте за собой дверь!), звоните по телефону дежурной службы МЧС «101».

Хорошо, если в доме есть порошковый огнетушитель, и вы умеете им пользоваться. Но знайте, что его можно использовать только в первые минуты, когда загорание не переросло в пожар. В противном случае надо сразу же покинуть помещение.

Источник

Методические рекомендации по определению очага пожара и изъятию вещественных доказательств с места пожара

“Определение очага пожара, очаговые признаки. Инструментальные методы определения очага пожара, изъятие вещественных доказательств с мест пожаров”.

ВВЕДЕНИЕ

Ежегодно в городах и районах области происходит более 2000 пожаров и практически по всем из них сотрудниками государственного пожарного надзора проводятся проверки и исследования. C отрудниками испытательной пожарной лаборатории МЧС России ВО ежегодно производится около 300 исследований, изъятых на пожарах, вещественных доказательств, c оставляется более 100 технических заключений по материалам проверок. К сожалению, причины возникновения пожаров устанавливаются еще не во всех случаях. Так, при осмотре места пожара не всегда уделяется должное внимание характерным проявлениям пожара, таким как выгорание древесины, деформация металлических и железобетонных конструкций, направление распространения горения и т.д. Зачастую сотрудники, занимающиеся расследованием пожаров, не владеют навыками изъятия и исследования вещественных доказательств с мест пожаров, которые в дальнейшем смогли бы оказать неоценимую помощь в установлении истинной причины возникновения пожара. Многие ошибочно считают, что пожарные эксперты и инженеры ИПЛ могут по материалам дела установить первоначальный очаг, причину пожара и даже указать виновного. Эксперт может только подтвердить или исключить те версии о месте расположения очага, причине пожара, которые полно и четко отработаны при расследовании (исследовании) и зафиксированы в материалах дела.

В настоящее время имеется достаточное количество справочной литературы по тем или иным вопросам, касающихся расследования (исследования) пожаров, однако эти данные разбросаны по многим источникам и зачастую на местах проблематично найти ответы по интересующим сотрудника (работника) госпожнадзора вопросам.

ОПРЕДЕЛЕНИЕ ОЧАГА ЗАГОРАНИЯ (ПОЖАРА).

Для выявления причины пожара первостепенной важностью является обнаружение места первичного очага загорания. Этому могут способствовать ряд признаков, возникающих при развитии пожара и помогающих визуально определить соответствующее место. К числу таких признаков относится:

1) наличие следов обугливания на уровне пола. Поскольку пожар развивается, стремясь подняться вверх, то обнаружение горения системы на нижнем уровне облегчает определение места возникновения источника загорания. Сквозные прогары пола (если в этом месте до пожара горючих материалов не было) являются одним из характерных признаков очага пожара;

При возникновении пожара, например, на нижних этажах многоэтажного здания «очаговый конус» может быть определен по границам зоны горения на каждом этаже. В этом случае основание конуса будет находиться на этаже, где возник пожар, и по мере перехода горения с нижнего этажа на верхний глубина зоны горения уменьшается, образуя вершину конуса на верхнем этаже. Описанные признаки формирования “очагового конуса” при развитии пожара с этажа на этаж дают направление возможного поиска места его возникновения на уровне этажа, где имеется наибольшая зона поражений, возникших при горении.

Для 2-3 этажных зданий со сгораемыми перекрытиями, в случае прогорания всех перекрытий снизу до верху, очаг пожара будет находится на этаже, где имеются наименьшие прогары в полу. Для железобетонных, бетонных, кирпичных и оштукатуренных конструкций и частей зданий общими признаками, по которым можно судить об “очаговом конусе”, являются: изменение цвета, характер закопчения, отслаивание, образование трещин и местных разрушений.

Эффект “скоса” также помогает обнаружить направление горения через пол, настил, междуэтажное перекрытие. Эта информация должна увязываться с тем влиянием, которое могло оказывать на направление развития огня вентиляция и процесс тушения, способные изменить силу огня и его направление.

C ледует учитывать, что пользуясь указанными признаками без внимательного их сопоставления и достаточного анализа действительной обстановки на пожаре, можно в отдельных случаях определить не первоначальный очаг пожара, а очаг горения, т.е. место, где горение по каким-либо причинам происходило более интенсивно, чем в очаге пожара.

В идеальных условиях отсутствия направленного движения воздуха и наличия одинаковой по характеру распределения, горючести и тепловыделению пожарной нагрузки теплота от очага пожара вызовет равную скорость развития горения во всех направлениях, способствуя наиболее четкому проявлению указанных выше характерных признаков первоначального очага горения. В этом случае в формировании признаков направленности распространения горения на поверхностях сгораемых и несгораемых конструкций, изделий, материалов и технологического оборудования основную роль будет играть только фактор времени, проявляющийся в том, что на более удаленных от очага пожара участках горение возникнет позже, поэтому их элементы подвергнутся меньшей степени поражения. Изменение указанных условий (например, наличие направленного движения воздуха (тяга), встреча теплового потока с более легковозгораемой и тепловыделяющей частью пожарной нагрузки) может способствовать образованию в этом месте первоначального очага пожара. Так, например, при наличии в железнодорожном вагоне распавшихся из-за некачественной обвязки кип хлопка-волокна, последние могут сгорать быстрее, чем опрессованная до плотности 500 кг/м 3 кипа, на которой возник первоначальный очаг пожара.

Практика исследования пожаров показывает, что при их возникновении редко имеет место сочетание благоприятных для горения факторов. Поэтому горение в начальной стадии происходит в пределах ограниченного участка, что приводит к образованию более или менее выраженных очаговых признаков.

6) п ризнаки очага пожара на отдельных частях здания и конструкциях:

б) учет образовавшихся на металлических поверхностях цветов побежалости, позволяет получить дополнительную информацию о нагреве детали в пожаре и установить достоверные сведения об очаге пожара:

в) по изменениям поверхности древесины можно приблизительно определить величину температурного воздействия и существенно облегчить определение очага пожара:

— от 150 до 250 0 С – древесина приобретает коричневый оттенок;

— от 250 до 600 0 С – происходит незначительное обугливание древесины по толщине;

— от 600 до 800 0 С – происходит образование крупнопористого древесного угля;

— от 800 до 1000 0 С – происходит развал древесины, а выше 1000 0 С – полный ее развал.

7) особенности источника зажигания:

а) при пожарах, возникших от керосиновых ламп, фонарей, электроплиток, их остатки могут свидетельствовать о месте, где первоначально возникло горение;

Растрескивание бетона может служить индикатором воздействия на него пламени горючей жидкости. Поскольку для розлитой жидкости характерно диффузионное горение, наиболее высокая температура ее пламени наблюдается на границе раздела с внешней средой. В связи с этим характерное растрескивание бетона может происходить, например, вдоль краев горящей лужи разлитой жидкости, особенно в случае, когда горение было прекращено до полного ее выгорания и оно продолжалось лишь в отдельных щелях, углублениях и других неровностях поверхности. В этих местах в результате их неравномерности более резко выражена изменяемость поверхности бетона под влиянием теплового воздействия. При горении тяжелых углеводородных топлив по краям измененных участков могут присутствовать смолистые остатки от их горения, обнаруживаемые при облучении проб в ультрафиолетовом свете.

Поведение горючих жидкостей, обнаруживаемых на пожарах, может быть охарактеризовано следующими особенностями.

1. Поток жидкости растекается и может обнаруживаться на более низких поверхностях.

2. Жидкость проникает через щели в полу, что способствует в условиях лучшей аккумуляции тепла активизации ее горения и его большей продолжительности.

3.Очень летучие жидкости (спирты, кетоны), вспыхивая на поверхности материала, быстро сгорают, не оказывая на нее существенного влияния. Лишь проникновение больших количеств такой жидкости через щели и трещины способствует при горении глубокому обугливанию поверхности. Пол может быть обесцвечен в результате растворяющего действия такой жидкости, обычно в процессе поверхностного горения ее слоя. Менее летучие жидкости (например керосин, бензин) показывают эффект фитиля при горении их разлива. Образующиеся в результате испарения пары питают пламя, а нижележащая жидкость просачивается через щели, защищая поверхность пола от действия пламени. В результате после пожара четко выявляется глубокое обгорание пола по краям располагавшейся лужи горючей жидкости. Необычное поведение огня, при котором углы помещения выгорают раньше, чем его другие площади, указывает на возможность и место поджога. Признаками его также могут служить наличие двух и более не связанных между собой очагов возникновения пожара; расположение очага на внешней стороне здания или сооружения.

Инструментальные методы определения очага и причины пожара.

Общий методический подход к решению задачи выявления очаговых признаков пожара заключается в том, что термическое воздействие не проходит бесследно для большинства конструкционных материалов, как сгораемых, так и несгораемых. В их структурах и свойствах происходят, зачастую невидимые глазу изменения, которые можно зафиксировать рядом инструментальных методов.

1. Ультразвуковой метод исследования железобетонных конструкций. Метод предназначен для выявления скрытых очаговых признаков пожара по степени разрушения поверхностного слоя строительных конструкций из бетона, железобетона, гранита и мрамора. Метод основан на зависимости скорости распостранения поверхностных ультразвуковых волн от длительности и температуры нагрева конструкций при пожаре. Зонам с наибольшими разрушениями поверхностного слоя соответствуют участки конструкции с наименьшей скоростью прохождения УЗ-волн. Используются дефектоскопы различных модификаций.

2. Метод определения условий теплового воздействия на стальные конструкции. Основан на анализе окалины, образующейся на стали при высокотемпературном (7000 С и выше) воздействии в ходе пожара. Толщина окалины и ее компонентный состав являются функциями температуры и длительности теплового воздействия на металлическую конструкцию. Толщина окалины измеряется микрометром, а состав ее определяется одним из двух методов:

а). Химическим методом комплексонометрического титрования тринолом “Б” определяют процентное содержание в окалине двухвалентного и трехвалентного железа, а по их содержанию по расчетным формулам определяются время температурного воздействия и средняя температура пожара в месте отбора пробы. б). Рентгенографическим методом определяют в окалине содержание вустита, магнетита и гематита.

3. Магнитный метод исследования холоднодеформированных стальных изделий. Предназначен для определения зон термических поражений путем измерения тока размагничивания или коэрцитивной силы на однотипных холоднодеформированных стальных изделиях (гвозди, болты, шурупы, винты, скобы и т.п.), находящихся в различных зонах горения при пожаре. Метод основан на зависимости величины тока размагничивания от степени рекристаллизации холоднодеформированного металла, пропорциональной температуре нагрева при пожаре.

4. Исследование обугленных остатков древесины. В процессе термического разложения (горения) древесины на пожаре происходит изменение целого комплекса структурных параметров углей. Физико-химические свойства угля, образующегося при горении древесины в условиях пожара, определяются в основном температурой и длительностью теплового воздействия. С температурой и продолжительностью надежно “связывается” электропроводность углей в местах теплового воздействия на деревянные конструкции. Поэтому наиболее простым методом исследования обугленных остатков древесины является измерение их электросопротивления в точках отбора проб. В итоге исследования выдаются значения продолжительности теплового воздействия и температуры пожара в местах отбора проб.

5. Исследование обгоревших остатков лакокрасочных покрытий (ЛКП) строительных конструкций. Изменения функционального состава ЛКП под воздействием температуры лучше всего фиксируются методом ИК-спектроскопии. Закономерности в изменении отдельных характеристик ИК-спектров и изменение зольности покрытий с возрастанием температуры и длительности теплового воздействия позволяет путем отбора и анализа проб одной и той же краски на различных участках места пожара определять зоны термических поражений окрашенных конструкций.

6. Метод исследования неорганических строительных материалов. В неорганических строительных материалах на основе цемента, извести и гипса при нагревании происходят изменения структуры, компонентного и функционального состава, которые могут быть зарегистрированы методом ИК-спектроскопии, рентгеноструктурного анализа, а так же УЗ-дефектоскопии.

Исследование материалов на основе цемента и извести производится методом ИК-спектроскопии и термическим методом определения остаточного содержания летучих веществ. Кроме перечисленных выше инструментальных методов определения очага пожара существует ряд методов исследования вещественных доказательств с целью установления причины пожара.

1. Обнаружение и исследование следов ЛВЖ и ГЖ в вещественных доказательствах, изымаемых с места пожара. Исследование вещественных доказательств проводится с использованием инфракрасной, ультрафиолетовой и флуоресцентной спектроскопии, газожидкостной и тонкослойной хроматографии. Исследование газовой фазы над объектами – носителями с помощью индикаторных трубок, входящих в комплект мини-экспресс лаборатории может проводится как в лаборатории, так и непосредственно на месте пожара.

3. Установление момента аварийного режима работы в лампах накаливания. При аварийном режиме в лампе накаливания возможно появление электрической дуги между никелевыми электродами. При образовании капель перегретого никеля происходит интенсивное его испарение на внутренние стеклянные поверхности лампы. Обнаружение напыленного на стеклянных деталях лампы никеля является критерием наличия аварийного режима и, соответственно, возможной причастности лампы к причине пожара.

4. Выявление аварийного режима работы элетрокипятильников. При аварийном режиме работы погружных элетрокипятильников малого габарита (без воды) происходит изменение в структуре металла трубки (нержавеющая сталь, латунь) в месте, где заложена электроспираль. На участке трубчатой оболочки, примыкающей к изолятору электрокипятильника этого не происходит. Такие изменения можно выявить с помощью металлографического анализа.

Отбор проб материалов и их обгоревших остатков для установления причины пожара.

1. Окалина с конструкционных сталей. Анализ окалины является одним из наиболее удобных методов исследования конструкционных сталей при установлении очага пожара. Он дает возможность определить ориентировочную температуру и длительность теплового воздействия на данную металлическую конструкцию в месте отбора пробы. Для исследования отбираются плотные следы окалины, полностью (без пузырей) прилегающие к металлу. Поэтому сначала на намеченном участке металлоконструкции с поверхности счищаются выгоревшие остатки краски, пузыри окалины, т.е. все, что легко соскребается с поверхности конструкции ножом, стамеской или другими аналогичными предметами. Затем зубилом под углом 450 к поверхности с металла сбиваются чешуйки плотных слоев окалины. Чтобы чешуйки не разлетались, их можно улавливать кольцевым магнитом в отверстие которого предварительно вставлена свернутая трубочкой бумага. Наиболее легкий и удобный способ отбора пробы окалины – это деформация конструкций (если ее сечение позволяет это сделать), при деформации плотная окалина мгновенно скалывается.

2. Холоднодеформированные стальные изделия. Холоднодеформированными изделиями называют изделия, полученные путем холодной штамповки, протяжки, ковки, т.е. путем деформации металла при относительно низких температурах (ниже температуры плавления и размягчения). К данной номенклатуре относятся прежде всего наиболее распространенные типоразмеры крепежных изделий: гвозди, болты, гайки, шпильки, шурупы, винты, скобы, холоднотянутая стальная проволока диаметром 3-5 мм. Последующей термической обработки на заводе они не подвергаются, сохраняют структуру холодной деформации и являются основными объектами исследования. Для исследования, на месте пожара отбираются однотипные стальные изделия, длиной не менее 40 мм., рассредоточенные по исследуемой зоны пожара. Например, это могут быть гвозди, которыми были прибиты доски пола или болты, скрепляющие те или другие металлоконструкции. Изымаемые изделия должны быть одинакового типоразмера. Количество проб не менее 10-12 (чем больше, тем лучше). По возможности, целесообразно в качестве объекта сравнения изъять один экземпляр такого же изделия, находящегося вне зоны нагрева.

3. Обугленные остатки древесины и древесных композиционных материалов. Отбор проб угля целесообразно проводить в точках с наибольшей глубиной обугливания, на участках, где по тем или иным соображениям предполагается очаг пожара, зона длительного тления, а так же в других точках, информация о длительности и интенсивности процесса горения в которых представляет первоочередной интерес при исследовании пожара. Весьма целесообразен отбор проб в значительном количестве точек (15-20 и более) и по всей зоне пожара. Это дает возможность довольно объективно воссоздать картину его развития. Важно, чтобы в намеченных точках отбора проб слой угля не был нарушен, сколот. В выбранных точках с помощью штангенциркуля-глубиномера, тонкой металлической линейки или гвоздя методом пенитрации (протыкания слоя угля) измеряется толщина слоя угля (hу). Кроме толщины слоя угля, в данной точке определяется величина потери сечения конструкции на данном участке (hп) и первоначальная толщина элемента конструкции на данном участке (h). Определение первоначальной толщины элемента конструкции делают либо измерением ее на уцелевшем участке, либо путем обмеров аналогичных конструкционных элементов (досок пола, балок, лаг). Затем приступают к отбору пробы. C помощью пробоотборника, ножа или скальпеля на исследование отбирают верхний (3-5 мм.) cлой угля, предварительно смахнув с него кисточкой хлопья золы и частички пожарного мусора. Это делается для того что бы при измерении сопротивления пробы угля значение не было равно нулю. Достаточно отобрать около 1 гр. угля. Следует помнить, что свойства угля меняются по слоям, поэтому слой нужно отбирать по возможности точно и аккуратно. В местах сплошных прогаров уголь отбирают по склону “кратера“ прогара, желательно в 2-3 точках, отдельными пробами. В случае крупных трещин пробу отбирают не в трещине, а на поверхности элемента конструкции. Здесь же измеряют толщину обугленного слоя. Уголь необходимо отбирать со стороны, обращенной к источнику теплового воздействия. Если неясно откуда происходило огневое воздействие, то отдельные пробы отбирают с 2-х сторон. Отобранный уголь упаковывают в бумажный или полиэтиленовый пакет или другую тару (емкость), снабжают биркой, на которой отмечают номер пробы, место ее отбора на плане (схеме); в специальной таблице фиксируют измерения линейных параметров угля и конструкций (hп; hу; h). Оформление изъятия и упаковка проб. Факт отбора проб материалов на исследование должен быть зафиксирован в протоколе осмотра места пожара или в специальном протоколе изъятия проб. Все точки отбора проб отмечаются на плане (схеме) места пожара, который при необходимости сопровождается краткими коментариями (пояснениями). Один экземпляр плана с точками отбора проб прилагается к протоколу осмотра места пожара, а второй направляется вместе с пробами на исследование. Каждая проба упаковывается в надежно закрытый пакетик, конвертик или емкость (бюкс, стеклянный пузырек), на котором указан номер пробы, а все вместе – в полиэтиленовый пакет. Пакет опечатывается и отправляется в испытательную лабораторию вместе с сопроводительным письмом, планом места пожара с точками отбора проб, таблицей с результатами измерений hп; hу и h (для древесных углей).

Изъятие вещественных доказательств с целью установления причины пожара.

1. Объекты электротехнического назначения. Пожары от электротехнических причин можно разделить на два основных класса:

а). Пожары, возникающие внутри электрической распределительной системы. К ней относятся все установочное электрооборудование от точки, где завершается силовая проводка в здание, до приемников (электропотребителей).

б).Пожары, возникающие внутри электроприемников.

Сопоставление местонахождения найденных остатков сгоревшего электрооборудования с местами его первоначального расположения согласно электрической схеме объекта позволяет выявить допущенные в процессе эксплуатации отклонения. Изъятию на исследование объектов электротехнического назначения должен предшествовать общий осмотр электросети в зоне пожара. Должно быть установлено и в протоколе осмотра зафиксировано положение выключателей и состояние средств защиты по всей линии энергоснабжения сгоревшего объекта (помещения). В ходе осмотра желательно составить схему энергоснабжения сгоревшего помещения. Наиболее тщательно осматривается зона очага пожара. В ней визуально исследуются все имеющиеся электропотребители и электрокоммуникации. Отсутствие признаков аварийных режимов на тех или иных электроприборах и частях электропроводки фиксируются в протоколе осмотра. В спорных случаях, а также при невозможности установить при визуальном осмотре причастность (непричастность) объекта к возникновению пожара, он изымается для лабораторных исследований. Изъятию подлежат также все выявленные в зоне очага объекты со следами аварийных режимов работы (прожогами, оплавлениями и т.д.).

Электроприборы и оборудование.

Провода со следами оплавлений.

Параллельно в протоколе осмотра места происшествия отмечается, какие проводники изъяты, в каком месте, и делаются необходимые фотоснимки. К протоколу осмотра должна быть приложена электрическая схема, на которой указывается место изъятия проводников. Если вещественные доказательства изымались при раскопках пожарища и невозможно установить при осмотре, каким именно элементом схемы является данный проводник, следует отметить место его изъятия на плане помещения, здания или сооружения.

При назначении исследований (экспертиз), связанных с исследованием металлических проводников, помимо вещественных доказательств необходимо представлять следующие материалы:

— электрическую схему объекта с указаниями, какими элементами ее являются представленные на исследование проводники (желательно);

— план объекта с указанием на нем мест изъятия проводников, места предполагаемого очага пожара, места ввода электроэнергии на объект.

Исследование проводников со следами оплавлений.

Методика ВНИИ МВД СССР от 1986 года “Исследование медных и алюминиевых проводников в зонах короткого замыкания и термического воздействия” делится (состоит) из 5 этапов:

1. Визуальный осмотр.

2. Морфологический анализ.

3. Рентгеноструктурный анализ (РСА).

4. Металлографический анализ (МГА);

5. Анализ металлических проводников на углерод.

Основные понятия. Под первичным коротким замыканием (ПКЗ) понимается КЗ, которое происходит в отсутствие воздействия на проводник опасных факторов пожара при нормальной (комнатной) температуре окружающей среды и нормальном составе атмосферы (21% кислорода, 79% азота). Под вторичным коротким замыканием (ВКЗ) понимается КЗ, которое происходит в процессе развития пожара при повышенной температуре окружающей среды (2000С и более), достаточной для начала интенсивного термического разложения изоляции и в атмосфере, насыщенной газообразными продуктами разложения горючих веществ (СО, СО2, Н2 и др.) при пониженном содержании кислорода. В основу исследования положен принцип повышения достоверности вывода о моменте возникновения КЗ при сохранении образцов – вещественных доказательств. Например, визуальный осмотр, морфологические исследования и рентгеноструктурный анализ выполняются без разрушения образцов (проводников). Металлографический анализ сопровождается частичным разрушением, а газовый – полным уничтожением проводника.

1. В настоящее время на базе Вологодской ИПЛ проводятся исследования медных проводников в три этапа: визуальный осмотр, рентгеноструктурный анализ, металлографический анализ, что вполне достаточно, чтобы определить природу образования оплавлений на проводниках.

а). В процессе визуального осмотра необходимо определить и указать в описании вещественных доказательств:

— сечение и длину кабельных изделий;

— количество жил и проволок в жиле;

— при наличии изоляции – материал и марку кабельного изделия;

— при наличии оплавлений – характер оплавлений, изменение сечения проводников по длине.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *