как узнать длину гипотенузы треугольника
Найти гипотенузу треугольника формула
Гипотенуза, что такое гипотенуза. Формула гипотенузы треугольника. Как найти гипотенузу, примеры задач на поиск гипотенузы. Посчитать длину гипотенузы онлайн.
О гипотенузе.
Что такое гипотенуза!?
С самого начала начнем с определение, что такое гипотенуза :
Гипотенуза (греч. ὑποτείνουσα, натянутая) — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. Длина гипотенузы прямоугольного треугольника может быть найдена с помощью теоремы Пифагора: квадрат длины гипотенузы равен сумме квадратов длин катетов.
Гипотенуза существует только у прямоугольного треугольника!
Гипотенузу можно найти по теореме Пифагора
Формула гипотенузы треугольника :
Дадим определение формулы гипотенузы треугольника:
Гипотенуза треугольника равна корню квадратному из квадратов сторон треугольника.
Задача/пример найти длину гипотенузы.
Найдите длину гипотенузы, если длина стороны а = 8см и длина стороны b = 6см.
Нам уже не нужно выводить дополнительные формулы, мы уже это сделали выше:
Нам нужно всего лишь заменить наши буквенные обозначения числовыми значениями.
Корень из 100 равен 10.
Длина гипотенузы в прямоугольном прямоугольнике, у которого одна сторона равна 8 см, а вторая 6см, равна 10
Найти длину гипотенузы онлайн
Для того, чтобы найти длину гипотенузы онлайн, вы можете воспользоваться нашей страницей.
Для того, чтобы найти длину гипотенузы :
В первом поле введите длину первой стороны.
Во втором поле введите длину второй стороны.
Гипотенуза и угол «α» прямоугольного треугольника
Свойства
Если в прямоугольном треугольнике известна гипотенуза и угол α, то можно сразу вычислить катеты и угол β из свойства суммы углов треугольника и отношений синуса и косинуса. (рис. 79.1) β=90°-α a=c sinα b=c cosα
Периметр, заданный суммой катетов и гипотенузы, можно представить в виде суммы известной гипотенузы и выраженных через нее катетов. P=a+b+c=c sinα+c cosα+c=c(sinα+cosα+1)
Площадь любого прямоугольного треугольника равна половине произведения катетов, следовательно, чтобы рассчитать площадь через гипотенузу и угол α, необходимо также заменить неизвестные на соответствующие выражения. S=ab/2=(sinα cosα)/2
Треугольник, в котором один угол прямой, будет иметь всего одну высоту, опущенную на гипотенузу. Из любого внутреннего прямоугольного треугольника, полученного с помощью дополнительного построения высоты, можно выразить ее, как произведение катета и синуса угла. (рис. 79.2) h=b sinα=c cosα sinα
Найти медиану прямоугольного треугольника проще всего, если она опущена на гипотенузу, в таком случае она будет равна ее половине. Медианы катетов вычисляются по стандартным формулам с заменой переменных через гипотенузу. (рис.79.3) m_с=c/2 m_b=√(2a^2+2c^2-b^2 )/2=√(2a^2+2a^2+2b^2-b^2 )/2=√(4a^2+b^2 )/2=√(4 〖c^2 sin^2〗α+〖c^2 cos^2〗α )/2=(с√(3 sin^2α+1))/2 m_a=√(2c^2+2b^2-a^2 )/2=√(2a^2+2b^2+2b^2-a^2 )/2=√(4 〖c^2 cos〗^2α+sin^2α )/2=(с√(3 cos^2α+1))/2
Рассчитать биссектрисы прямоугольного треугольника тоже достаточно просто, если использовать специальные формулы, зная гипотенузу и угол α. Преобразуя выражения, можно упростить их до следующих тождеств. (рис. 79.4) l_с=(ab√2)/(a+b)=(c sinα cosα √2)/(sinα+cosα ) l_a=√(bc(a+b+c)(b+c-a) )/(b+c)=√(bc((b+c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+b^2 ) )/(b+c)=√(bc(2b^2+2bc) )/(b+c)=(b√(2c(b+c) ))/(b+c)=(c cosα √(2c(c cosα+c) ))/(c cosα+c)=(c cosα √(2(cosα+1) ))/(cosα+1) l_b=√(ac(a+b+c)(a+c-b) )/(a+c)=(a√(2c(a+c) ))/(a+c)=(c sinα √(2c(c sinα+c) ))/(c sinα+c)=(c sinα √(2(sinα+1) ))/(sinα+1)
Проведенная средняя линия прямоугольного треугольника создает внутри него еще один подобный треугольник в два раза меньше первоначального, поэтому сама она равна половине параллельной ей стороны. (рис. 79.7) M_a=a/2=(c sinα)/2 M_b=b/2=(c cosα)/2 M_c=c/2
Прямоугольный треугольник может быть вписан в окружность и описан вокруг нее. Радиус вписанной окружности внутри треугольника можно вычислить, сложив катеты за вычетом гипотенузы, и разделив полученное число на два. Рассчитать радиус описанной окружности для прямоугольного треугольника через гипотенузу еще проще, так как он равен ее половине. (рис. 79.5, 79.6) r=(a+b-c)/2=(c sinα+c cosα-c)/2=c/2 (sinα+cosα-1) R=c/2
Гипотенуза прямоугольного треугольника
Гипотенуза прямоугольного треугольника.
Гипотенуза – самая длинная сторона прямоугольного треугольника, противоположная прямому углу.
Гипотенуза прямоугольного треугольника (определение и понятие). Что такое гипотенуза?
Рис. 1. Гипотенуза прямоугольного треугольника
Для непрямоугольного треугольника гипотенуза и катеты не существуют.
По катету и гипотенузе или по двум катетам можно судить о равенстве двух прямоугольных треугольников.
Тригонометрические функции, связанные с гипотенузой:
– синус α – отношение катета, противолежащего углу α, к гипотенузе.
Рис. 2. Гипотенуза прямоугольного треугольника
– косинус α – отношение катета, прилежащего углу α, к гипотенузе.
– тангенс α – отношение катета, противолежащего углу α, к катету, прилежащему углу α.
– котангенс α – отношение катета, прилежащего углу α, к катету, противолежащему углу α.
– секанс α – отношение гипотенузы к катету, прилежащему углу α.
– косеканс α – отношение гипотенузы к катету, противолежащему углу α.
Длина гипотенузы прямоугольного треугольника:
Длина гипотенузы прямоугольного треугольника находится с помощью теоремы Пифагора, которая утверждает, что:
Сумма квадратов катетов равна квадрату гипотенузы.
.
Также: α – угол, противолежащий стороне a, β – угол, противолежащий стороне b.
Рис. 3. Гипотенуза прямоугольного треугольника
Длина гипотенузы равна отношению длины катета и косинуса прилежащего угла.
Длина гипотенузы равна отношению длины катета и синуса противолежащего угла.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Справочники
Мировая экономика
Востребованные технологии
Поиск технологий
О чём данный сайт?
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.
Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!
Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.
О Второй индустриализации
Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.
Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.
Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.
Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.
Калькулятор прямоугольного треугольника
Корзина
Как пользоваться онлайн-калькулятором. В форме укажите известные параметры прямоугольного треугольника:
а) 2 катета,
б) катет и гипотенуза,
в) катет и противолежащий острый угол,
г) гипотенуза и острый угол.
Заполните поле «Текст с картинки». Нажмите «Решить».
При помощи калькулятора прямоугольного треугольника можно найти гипотенузу онлайн, а также катеты, величины острых и противолежащих углов прямоугольного треугольника.
В форме калькулятора гипотенузы указываются два параметра прямоугольного треугольника онлайн: две стороны или острый угол и сторона.
Для углов имеются два поля: для градусов и для минут.
Далее заполнить поле «Текст с картинки» и нажать «Решить». Компьютерная программа автоматически сделает расчет.
Приводятся ответы с подробными решениями, включая формулы. Для решения задач используется теорема Пифагора. Катеты и гипотенуза вычисляются через синус.
Примеры решения калькулятора прямоугольного треугольника:
1) как найти неизвестный катет или катеты, если известна гипотенуза, равная 2 см, и острый угол 20°. В поле для гипотенузы «c» указывается 2, в поле «Угол (градусов, °)» ставится 20, в поле «Угол (минут, ‘)» указывается 0. Ответ онлайн калькулятора прямоугольного треугольника: длина катетов a = 0,68 см; b = 1,88 см, острый угол B = 70°.
2) пример вычисления неизвестных сторон и острых углов прямоугольного треугольника по двум катетам или по гипотенузе и катету. Вопрос: как найти угол прямоугольного треугольника, зная его стороны, т.е. зная 2 катета или 2 стороны. Известна длина катетов a=11, b=60.
В полях для катетов «a» указывается 11, в поле «b» 60. Нажать «Решить». В ходе решения находим третью сторону – гипотенузу – и находим угол в прямоугольном треугольнике, уже зная все стороны.
Ответ калькулятора гипотенузы: гипотенуза c=61, значения углов A= 10°23′, B = 79°37′. Если даны катет и гипотенуза, то заполняются поля для катета «a» и для гипотенузы «c».
3) с помощью этого онлайн-калькулятора можно решить задачу, где требуется найти катет онлайн, или как найти гипотенузу, зная катет и угол. Например, a=3, противолежащий угол = 30°27′. В поле для катетов «a» указывается 3, в поле «Угол (градусов, °)» ставится 30, в поле «Угол (минут, ‘)» указывается 27. Ответ калькулятора углов прямоугольного треугольника: гипотенуза c = 5,92; катет b = 5,10; угол 59°33’.
Калькулятор сторон прямоугольного треугольника может найти гипотенузу по катету и углу. Онлайн калькулятор гипотенузы находит катет по гипотенузе и углу.
Если стоит задача, как найти катет, если известна гипотенуза и угол, то можно использовать решение прямоугольного треугольника на этой странице. Гипотенузу прямоугольного треугольника, его угол быстро вычисляет компьютерная программа. Калькулятор теоремы Пифагора может найти катет по углу и катету.
Здесь предлагаются ответы на тесты, если требуется вычислить угол по двум катетам. Расчет гипотенузы выполняется онлайн.
Вычисление гипотенузы и углов прямоугольного треугольника при помощи калькулятора катетов дает ответы на следующие тестовые задания по теме «катет и гипотенуза«:
— как найти угол прямоугольного треугольника, зная его стороны,
— узнать гипотенузу, катет прямоугольного треугольника,
— определить гипотенузу по двум катетам,
— рассчитать третью сторону прямоугольного треугольника,
— вычислить катет, если известна гипотенуза и угол,
— найти решение прямоугольного треугольника,
— определить длину гипотенузы, зная 2 катета,
— посчитать угол в прямоугольном треугольнике,
— узнать гипотенузу по катетам,
— рассчитать величину угла в градусах и минутах по катетам,
— найти длину катета по катету и углу,
— вычислить угол или углы прямоугольного треугольника онлайн,
— решить прямоугольный треугольник,
— подсчитать угол по катетам,
— найти сторону прямоугольного треугольника,
— рассчитать прямоугольный треугольник онлайн.
Слово «гипотенуза» со школьных времен у многих вызывает негативные ассоциации. Добавим загадочного и непонятного. Происходит от греческого «ὑποτείνουσα».
А ведь означает всего-навсего «вытянутый». И речь идет о простейшей форме треугольника – прямоугольной (рис. 1).
Гипотенузой называют сторону напротив прямого угла. Самую протяженную. В данном случае – с. Остальные составляющие – катеты.
Простыми фигурами интересовались древние строители Вавилона и Египта. А особенно – землемеры. Еще бы: ведь основа любой цивилизации – распределение угодий и налоги.
Считается, что теоретическая база была доказательно предложена Пифагором в V-м веке до н. э. Хотя, скорее всего, это было сделано ранее.
Теорема Пифагора
Сумма квадратов катетов составляет квадрат гипотенузы:
Верно и обратное утверждение. Треугольник, удовлетворяющий приведенному равенству – прямоугольный.
Формула верна только в Евклидовой геометрии, где параллельные прямые не пересекаются.
Утверждение приведено в современной интерпретации. В оригинале выглядит несколько по-другому: площадь квадрата, построенного на гипотенузе, идентична сумме площадей квадратов, построенных на катетах (рис. 2).
Существует масса способов доказательства. В том числе весьма сложных. А попадаются удивительно изящные, как например, на рисунке 3:
В тригонометрии
Построим на плоскости прямоугольную систему координат с единичной (с радиусом, равным 1) окружностью с центром в точке (0; 0). B – пересечение угла α и кривой (рис. 4).
На оси абсцисс X отмечается cos α; на оси ординат Y – sin α.
В получившемся прямоугольном треугольнике отрезок 0B является гипотенузой. Учитывая доказанную теорему, выводим основное равенство математической дисциплины:
sin 2 α + cos 2 α = 1
Гипотенуза прямоугольного треугольника
Связана со сторонами следующими соотношениями (см. рис. 1):
a – противолежащий α катет;
Величины sin α и cos α меньше либо равны 1, что очевидно из рис. 4. Но в треугольнике не может быть два прямых угла. Как не может быть нулевого.
Это означает, что гипотенуза – всегда наибольшая сторона треугольника, т. е.
Гипотенуза равнобедренного треугольника
В такой фигуре катеты равны и являются сторонами прямого угла (рис. 5). Расчет гипотенузы c производится по формуле теоремы Пифагора.
Нетрудно заметить, что углы α = 45°. Поскольку сумма всех равна 180°.
Пример решения задачи
Дан прямоугольный треугольник ABC (рис. 1). Рассчитайте длину AB, если b = 20 см, а β = 70°.
AC является катетом, противолежащим углу β. Значит нахождение гипотенузы сводится к отношениям:
В интернете есть онлайн калькуляторы для оперативного расчета величины. Но целесообразно ими пользоваться разве что при значительном объеме вычислений. Ведь формулы довольно просты.
Связанные с упомянутыми фигурами задачи распространены в реальной жизни. Приведенные уравнения призваны помочь в решении.