как узнать длину радиуса

Нахождение радиуса круга: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

Формулы вычисления радиуса круга

как узнать длину радиуса. radius kruga 1. как узнать длину радиуса фото. как узнать длину радиуса-radius kruga 1. картинка как узнать длину радиуса. картинка radius kruga 1.

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

как узнать длину радиуса. radius kruga 5. как узнать длину радиуса фото. как узнать длину радиуса-radius kruga 5. картинка как узнать длину радиуса. картинка radius kruga 5.

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2 π R

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

как узнать длину радиуса. radius kruga 3. как узнать длину радиуса фото. как узнать длину радиуса-radius kruga 3. картинка как узнать длину радиуса. картинка radius kruga 3.

S = π R 2

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):
как узнать длину радиуса. radius kruga 2. как узнать длину радиуса фото. как узнать длину радиуса-radius kruga 2. картинка как узнать длину радиуса. картинка radius kruga 2.

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
как узнать длину радиуса. radius kruga 4. как узнать длину радиуса фото. как узнать длину радиуса-radius kruga 4. картинка как узнать длину радиуса. картинка radius kruga 4.

Источник

Как найти радиус окружности

как узнать длину радиуса. 5f18659de27d9551358890. как узнать длину радиуса фото. как узнать длину радиуса-5f18659de27d9551358890. картинка как узнать длину радиуса. картинка 5f18659de27d9551358890.

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Источник

Вычисление радиуса: как найти длину окружности зная диаметр

Очень часто при решении школьных заданий по математике или физике возникает вопрос — как найти длину окружности, зная диаметр? На самом деле никаких сложностей в решении этой проблемы нет, нужно только чётко представлять себе, какие формулы, понятия и определения требуются для этого….

Основные понятия и определения

Площадь круга — это вся территория, заключённая внутри окружности. Она измеряется в квадратных единицах и обозначается латинской буквой s.

Пользуясь нашими определениями, приходим к выводу, что диаметр круга равен его самой большой хорде.

Внимание! Из определения, что такое радиус круга можно узнать, что такое диаметр круга. Это два радиуса отложенные в противоположных направлениях! как узнать длину радиуса. v2ljymyf. как узнать длину радиуса фото. как узнать длину радиуса-v2ljymyf. картинка как узнать длину радиуса. картинка v2ljymyf.Диаметр окружности.

Нахождение длины окружности и её площади

Если нам дан радиус окружности, то диаметр окружности описывает формула d = 2*r. Таким образом, для ответа на вопрос, как найти диаметр круга, зная его радиус, достаточно последний умножить на два.

Формула длины окружности, выраженная через её радиус, имеет вид l = 2*П*r.

Внимание! Латинской буквой П (Пи) обозначается отношение длины окружности к её диаметру, и это есть непериодическая десятичная дробь. В школьной математике она считается заранее известной табличной величиной, равной 3,14!

Теперь перепишем предыдущую формулу, чтобы найти длину окружности через её диаметр, помня, в чём состоит его разница по отношению к радиусу. Получится: l = 2*П*r = 2*r*П = П*d.

Из курса математики известно, что формула, описывающая площадь окружности, имеет вид: s = П*r^2.

Теперь перепишем предыдущую формулу, чтобы найти площадь окружности через её диаметр. Получим,

s = П*r^2 = П*d^2/4.

Одним из самых сложных заданий в данной теме является определение площади круга через длину окружности и наоборот. Воспользуемся тем, что s = П*r^2 и l = 2*П*r. Отсюда получим r = l/(2*П). Подставим полученное выражение для радиуса в формулу для площади, получится: s = l^2/(4П). Абсолютно аналогичным способом определяется и длина окружности через площадь круга.

Определение длины радиуса и диаметра

Важно! Прежде всего узнаем, как измерить диаметр. Это очень просто проводим любой радиус, продлеваем его в противоположную сторону до пересечения с дугой. Циркулем отмеряем полученное расстояние и с помощью любого метрического инструмента узнаем искомое!

как узнать длину радиуса. s1sfcsvf. как узнать длину радиуса фото. как узнать длину радиуса-s1sfcsvf. картинка как узнать длину радиуса. картинка s1sfcsvf.Ответим на вопрос, как узнать диаметр окружности, зная её длину. Для этого выразим его из формулы l = П*d. Получим d = l/П.

Мы уже знаем как из длины окружности можно найти её диаметр, точно также найдём и радиус.

l = 2*П*r, отсюда r = l/2*П. Вообще, чтобы узнать радиус, его нужно выражать через диаметр и наоборот.

Пусть теперь требуется определить диаметр, зная площадь окружности. Используем то, что s = П*d^2/4. Выразим отсюда d. Получится d^2 = 4*s/П. Для определения самого диаметра потребуется извлечь корень квадратный из правой части. Получится d = 2*sqrt(s/П).

Это интересно! Первый признак равенства треугольников: доказательство

Решение типовых заданий

Это интересно! Что такое биссектриса треугольника: свойства, связанные с отношением сторон

Окружность, диаметр, хорда геометрия 7 класс

Заключение

Исходя из приведённых выше рассуждений, можно прийти к выводу, что никаких сложностей в задачах, связанных с нахождением всевозможных характеристик окружности, нет. Достаточно хорошо выучить понятия и формулы, а также уметь производить арифметические действия, причём все выражения выводятся друг из друга.

Это интересно! Чему равна и как найти площадь равностороннего треугольника

Источник

Длина окружности

как узнать длину радиуса. 5f229b25242d2929753988. как узнать длину радиуса фото. как узнать длину радиуса-5f229b25242d2929753988. картинка как узнать длину радиуса. картинка 5f229b25242d2929753988.

6 класс, 9 класс, ЕГЭ/ОГЭ

Как найти длину окружности через диаметр

Диаметр — отрезок, который соединяет две точки окружности и проходит через её центр. Формула длины окружности через диаметр:

π— число пи — математическая константа, равная 3,14

d — диаметр окружности

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

π — число пи, равное 3,14

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

как узнать длину радиуса. 5fc51d3acad4c480175627. как узнать длину радиуса фото. как узнать длину радиуса-5fc51d3acad4c480175627. картинка как узнать длину радиуса. картинка 5fc51d3acad4c480175627.

π — число пи, равное 3,14

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

π — число пи, равное 3,14

d — диагональ прямоугольника

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

как узнать длину радиуса. 5fc51d7d79b45583816685. как узнать длину радиуса фото. как узнать длину радиуса-5fc51d7d79b45583816685. картинка как узнать длину радиуса. картинка 5fc51d7d79b45583816685.

π — математическая константа, она всегда равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

как узнать длину радиуса. 611e22dbb61aa552133208. как узнать длину радиуса фото. как узнать длину радиуса-611e22dbb61aa552133208. картинка как узнать длину радиуса. картинка 611e22dbb61aa552133208.

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

как узнать длину радиуса. 5fc51dc2491a3040017406. как узнать длину радиуса фото. как узнать длину радиуса-5fc51dc2491a3040017406. картинка как узнать длину радиуса. картинка 5fc51dc2491a3040017406.

π — математическая константа, равная 3,14

S — площадь треугольника

p — полупериметр треугольника

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:
как узнать длину радиуса. 5fc51e0d03a1b514061417. как узнать длину радиуса фото. как узнать длину радиуса-5fc51e0d03a1b514061417. картинка как узнать длину радиуса. картинка 5fc51e0d03a1b514061417.

π — математическая константа, равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм

Решение. Радиус окружности равен как узнать длину радиуса. 5fc51eb9740c9827113336. как узнать длину радиуса фото. как узнать длину радиуса-5fc51eb9740c9827113336. картинка как узнать длину радиуса. картинка 5fc51eb9740c9827113336.Подставим туда наши переменные и получим как узнать длину радиуса. 5fc51eeec6c6d592258880. как узнать длину радиуса фото. как узнать длину радиуса-5fc51eeec6c6d592258880. картинка как узнать длину радиуса. картинка 5fc51eeec6c6d592258880.

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.

Источник

Онлайн калькулятор периметра круга. Как узнать длину круга, окружности.

как узнать длину радиуса. vk. как узнать длину радиуса фото. как узнать длину радиуса-vk. картинка как узнать длину радиуса. картинка vk.

как узнать длину радиуса. ok. как узнать длину радиуса фото. как узнать длину радиуса-ok. картинка как узнать длину радиуса. картинка ok.

как узнать длину радиуса. tw. как узнать длину радиуса фото. как узнать длину радиуса-tw. картинка как узнать длину радиуса. картинка tw.

как узнать длину радиуса. fb. как узнать длину радиуса фото. как узнать длину радиуса-fb. картинка как узнать длину радиуса. картинка fb.

как узнать длину радиуса. g+. как узнать длину радиуса фото. как узнать длину радиуса-g+. картинка как узнать длину радиуса. картинка g+.

как узнать длину радиуса. mail. как узнать длину радиуса фото. как узнать длину радиуса-mail. картинка как узнать длину радиуса. картинка mail.

как узнать длину радиуса. circle. как узнать длину радиуса фото. как узнать длину радиуса-circle. картинка как узнать длину радиуса. картинка circle.

Что такое длина окружности или периметр круга и как ее вычислить? Для того что бы это понять нам необходимо разобраться с тем чему равна длина окружности.

Длина окружности всегда равна числу π (Пи)

Давайте с вами разберемся что же такое число пи. Π – это постоянная величина равная 3,14159265…

Но обычно Пи приравнивают к 3,14 и это число используют для математических расчетов в которых не требуется оооооооооочень точное вычисление.

Откуда же взялось это число и почему оно всегда равно одному и тому же? Для того что бы нам понять что такое число пи нам необходимо разобрать простой пример. Допустим у нас имеется окружность с диаметром равному единицы, так вот длина окружности — это число «пи».

Иными словами Пи ≈ 3,14 диаметрам круга или окружности.

Теперь зная и понимая что такое π мы можем с легкостью высчитать периметр или длину окружности которая равна

P = D * π
или
P = 2 πR
где R –это радиус, а D – это диаметр

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *