как узнать длину вектора
Модуль вектора. Длина вектора.
Определение длины вектора
Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.
Формулы длины вектора
Формула длины вектора для плоских задач
В случае плоской задачи модуль вектора a = < ax ; ay > можно найти воспользовавшись следующей формулой:
Формула длины вектора для пространственных задач
В случае пространственной задачи модуль вектора a = < ax ; ay ; az > можно найти воспользовавшись следующей формулой:
Примеры задач на вычисление длины вектора
Примеры вычисления длины вектора для плоских задачи
Решение: | a | = √ 3 2 + (-4) 2 = √ 9 + 16 = √ 25 = 5.
Примеры вычисления длины вектора для пространственных задачи
Решение: | a | = √ 2 2 + 4 2 + 4 2 = √ 4 + 16 + 16 = √ 36 = 6.
Примеры вычисления длины вектора для пространств с размерностью большей 3
Решение: | a | = √ 1 2 + (-3) 2 + 3 2 + (-1) 2 = √ 1 + 9 + 9 + 1 = √ 20 = 2√ 5
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Длина вектора
Длина вектора (или модуль вектора или абсолютная величина вектора) — это длина отрезка, изображающего вектор.
с началом в точке A(x1; y1) и концом в точке B(x2; y2) длину находим по формуле расстояния между точками:
Соответственно, для вектора
(то есть длина вектора равна квадратному корню из суммы квадратов его координат).
Найти длину вектора:
2) Если нужно найти длину вектора, зная координаты его начала и конца, удобнее сначала найти координаты вектора:
Теперь найдём его длину:
Длина (модуль) нулевого вектора равна нулю.
Длина вектора
Определение
Длина вектора (модуль вектора) — длина направленного отрезка, которая определяет числовое значение вектора.
Обозначается, как \(\left|\vec AB\right|\)
Нахождение длины вектора
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Исходные данные \(a_x=5,\) \(a_y=-3\) подставляем в формулу и вычисляем.
Если же вектор находится в пространственной системе, то есть \(\vec a=\left(a_x;a_y;a_z\right),\) то для вычисления потребуется формула:
Узнать длину вектора \(\vec a\) по его координатам (2; 2; 4).
Подставляем данные координат из условия и вычисляем:
Длина вектора через координаты точек его начала и конца
В предыдущем разделе мы нашли длину вектора с помощью координат. Но если они неизвестны, то длину можно посчитать через координаты точек его начала и конца.
Если даны две точки: \(A\left(a_x;a_y\right) и B\left(b_x;b_y\right),\) то вектор \(\vec AB \) имеет координаты \(\left(b_x-a_x;b_y-a_y\right).\)
Отсюда следует формула:
Формула для трехмерного пространства выглядит следующим образом:
Нахождение длины вектора по теореме косинусов
Однако по условию задач координаты вектора не всегда известны. Тогда приходится искать иные пути решения.
Теорема косинусов — квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Вычислить длину вектора \(\vec BC.\)
Длина вектора \(\vec BC\) равна длине стороны BC треугольника ΔABC.
Исходные данные позволяют воспользоваться теоремой косинусов, так как длины стороны треугольника известны из условия (они равны длинам векторов \(\vec AB\) и \(\vec AC\) ). И угол между ними тоже известен.
\(BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos\angle\left(\vec AB,\vec AC\right)=2^2+4^2-2\cdot2\cdot4\cdot\cos\frac\pi4=4+16-8\sqrt2=20-8\sqrt2\)
Онлайн калькулятор. Модуль вектора. Длина вектора.
Этот онлайн калькулятор позволит вам очень просто найти длину вектора для плоских и пространственных задач.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление модуля вектора и закрепить пройденый материал.
Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам
Размерность вектора:
Форма представления вектора:
Инструкция использования калькулятора для вычисления длины вектора
Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)
В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел..
Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)
Вычесления длины вектора (модуля вектора)
Например, для вектора a = x; ay; az> длина вектора вычисляется cледующим образом:
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Урок о том, как найти длину вектора
Длина вектора
Формула длины вектора на плоскости: |overline| = sqrt
Формула длины вектора в пространстве: |overline| = sqrt
Если даны координаты точек начала и конца вектора A(a_x; a_y) и B(b_x; b_y), то найти длину можно по формулам:
Нахождение длины вектора: примеры и решения, формулы и теоремы
Длину вектора a→ будем обозначать a→. Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора. Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат Oxy. Пусть в ней задан некоторый вектор a→ с координатами ax;ay. Введем формулу для нахождения длины (модуля) вектора a→ через координаты ax и ay.
Из теоремы Пифагора следует равенство OA2=OAx2+OAy2, откуда OA=OAx2+OAy2. Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что OAx2=ax2 и OAy2=ay2, а по построению длина OA равна длине вектора OA→, значит, OA→=OAx2+OAy2.
Отсюда получается, что формула для нахождения длины вектора a→=ax;ay имеет соответствующий вид: a→=ax2+ay2.
Если вектор a→ дан в виде разложения по координатным векторам a→=ax·i→+ay·j→, то вычислить его длину можно по той же формуле a→=ax2+ay2, в данном случае коэффициенты ax и ay выступают в роли координат вектора a→ в заданной системе координат.
Пример 1
Вычислить длину вектора a→=7;e, заданного в прямоугольной системе координат.
Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатамa→=ax2+ay2: a→=72+e2=49+e
Формула для нахождения длины вектора a→=ax;ay;az по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)
Отсюда следует, что длина вектора a→=ax;ay;az равна a→=ax2+ay2+az2.
Пример 2
Вычислить длину вектора a→=4·i→-3·j→+5·k→, где i→,j→,k→ — орты прямоугольной системы координат.
Дано разложение вектора a→=4·i→-3·j→+5·k→, его координаты равны a→=4,-3,5. Используя выше выведенную формулу получим a→=ax2+ay2+az2=42+(-3)2+52=52.
Длина вектора через координаты точек его начала и конца
Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.
Итак, даны точки с заданными координатами A(ax;ay) и B(bx;by), отсюда вектор AB→ имеет координаты (bx-ax; by-ay)значит, его длина может быть определена по формуле: AB→=(bx-ax)2+(by-ay)2
А если даны точки с заданными координатами A(ax;ay;az) и B(bx;by;bz) в трехмерном пространстве, то длину вектора AB→ можно вычислить по формуле: AB→=(bx-ax)2+(by-ay)2+(bz-az)2
Пример 3
Найти длину вектора AB→, если в прямоугольной системе координат A1, 3, B-3, 1.
Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим AB→=(bx-ax)2+(by-ay)2: AB→=(-3-1)2+(1-3)2=20-23. Второй вариант решения подразумевает под собой применение данных формул по очереди: AB→=(-3-1; 1-3)=(-4; 1-3); AB→=(-4)2+(1-3)2=20-23.-
Пример 4
Для начала распишем длину вектора AB→ по формуле: AB→=(bx-ax)2+(by-ay)2+(bz-az)2=(5-0)2+(2-1)2+(λ2-2)2=26+(λ2-2)2. Затем полученное выражение приравняем к 30, отсюда найдем искомые λ: 26+(λ2-2)2=3026+(λ2-2)2=30(λ2-2)2=4λ2-2=2 или λ2-2=-2 λ1=-2, λ2=2, λ3=0.
Нахождение длины вектора по теореме косинусов
Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.
Пусть заданы длины двух векторов AB→, AC→ и угол между ними (или косинус угла), а требуется найти длину вектора BC→ или CB→. В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ABC, вычислить длину стороны BC, которая и равна искомой длине вектора. Рассмотрим такой случай на следующем примере.
Пример 5
Длины векторов AB→ и AC→ равны 3 и 7 соответственно, а угол между ними равен π3. Вычислить длину вектора BC→.
Длина вектора BC→ в данном случае равна длине стороны BC треугольника △ABC. Длины сторон AB и AC треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов:BC2=AB2+AC2-2·AB·AC·cos∠(AB,→AC→)=32+72-2·3·7·cosπ3=37 ⇒BC=37 Таким образом, BC→=37.
Итак, для нахождения длины вектора по координатам существуют следующие формулы a→=ax2+ay2 или a→=ax2+ay2+az2, по координатам точек начала и конца вектора AB→=(bx-ax)2+(by-ay)2 или AB→=(bx-ax)2+(by-ay)2+(bz-az)2, в некоторых случаях следует использовать теорему косинусов.