как узнать какое число выпадет в генераторе случайных чисел
Номера в лотереях, которые чаще других приносят удачу
Принцип лотереи устроен таким образов, что выигрышная комбинация может состоять из любых случайных чисел. Но, как показывает практика, некоторые номера по необъяснимым причинам чаще остальных присутствуют в выигрышных комбинациях. Этот феномен заинтересовал специалистов, и они провели исследование изучающее поведение разных номеров. За основу была взята лотерейная статистика практически со всего земного шара.
Рейтинг удачных чисел
Эксперимент проводилось в 2017 году. Специалисты сравнили данные большой выборки разнообразных лотерей и определили номера, которые позволяли выигрывать чаще всего. В рамках анализа проанализировано пятнадцать самых популярных лотерей, в том числе Ирландская лотерея, игра Euromillions, PowerBall и многие другие представители игорной индустрии. В результате кропотливой работы был сформирован перечень самых удачливых номеров.
Перечень удачных номеров
Перечень неудачных номеров
Анти-рейтинг удачливых чисел
Многие люди, прочитав эту статью, могут сделать вывод, что не надо смотреть на перечисленные номера, так как они реже остальных встречаются в выигрышных комбинациях. Но развивая эту теорию дальше, можно выявить интересную закономерность. Выбирая номера, которые остальные игроки игнорируют, вы повышаете размер вероятного джекпота при равных шансах на победу. Ведь в случае выигрыша вам не придется делить его с другими участниками.
Система для выбора номеров в лотерейных билетах
Теперь читатели знают список самых удачливых и самых неудачных номеров в лотерейных билетах. Какие же выбрать? Руководствоваться при выборе этой информацией или опираться на свои собственные счастливые цифры?
Быстрота и удобство онлайн-лотерей позволят вам опробовать обе техники и сделать вывод самостоятельно. По данным исследования чаще всего в выигрышных комбинациях присутствуют числа 16, 22, 3, 6, а также 28 и 37. Однако многие игроки составляют комбинации исходя из собственно разработанных стратегий. И такой подход тоже работает. Большое количество лотерейных победителей доказали это на собственном примере.
Игрок из Канады воспользовался необычным способом выбора чисел и стал обладателем внушительного джекпота, который составил шестьдесят миллионов долларов. На протяжении тридцати лет он отмечал в лотерейных билетах одни и те же цифры. И наконец-то такое упорство было вознаграждено, канадец стал долларовым миллионером. При этом Ричарду Люстингу не только удалось победить. Он стал обладателем одного из самых больших выигрышей за время существования лотереи USA Powerball. На этом удача его не покинула, он входил в число победителей несколько раз.
Любитель лотерейных розыгрышей стал автором книги, в которой он подробно рассказывает о выбранной стратегии и дает практические советы, как выиграть в лотерею другим игрокам. Такой предприимчивости можно позавидовать.
Даже несмотря на исследования и советы опытных игроков, выбор чисел всегда остается за вами. Однако если вы нуждаетесь в подсказке, то можно попробовать поставить на счастливые номера. Поучаствуйте в лотерейном розыгрыше прямо сейчас и проверьте уровень своего везения на практике.
Каким образом можно угадать любое случайное число, которое было сгенериновано сайтом?
Раньше в качестве «генераторов случайных чисел» часто использовали компьютерные алгоритмы. Это не совсем корректно, потому что результаты, хоть и с большим трудом и с помощью вычислительных машин, было возможно предсказать. Так, например, один умник из США смог обмануть систему и просчитать алгоритм какой-то игры на деньги.
В настоящее время среди генераторов случайных чисел можно выделить два типа: генераторы псевдослучайных чисел, и генераторов настоящих случайных чисел (названия импровизированные).
Псевдослучайные числа, как видно из названия, не совсем случайны: для их генерации не используются физические источники. Их генерируют с помощью сугубо математического алгоритма. Например, берётся некоторое число (допустим то, которое выпало на кубике), затем перемножается с ещё одним числом (выпавшем при очередном подбрасывании кубика), затем возводится в куб, из результата вычитается ещё одно число, выпавшее на кубике, из получившегося числа извлекается корень третьей степени и из результата берется одиннадцатая цифра после запятой. На первый взгляд кажется, что такое число невозможно предсказать, но на самом деле, если идеально рассчитать траекторию кубика, то можно предсказать и результат. Именно такой алгоритм и описывает работу генераторов псевдослучайных чисел, только вместо кубика используется, например, количество пользователей сайта в данный момент времени.
С генераторами настоящих случайных чисел всё несколько сложнее. Для их работы необходимы физические источники, так как результаты должны быть детерминированы. Идеальным физическим источником является квантовая система: насколько известно современной науке, поведение квантовой системы абсолютно непредсказуемо и хаотично. Проблема такого источника, в первую очередь, заключается в дороговизне. Поэтому большинство сайтов, предоставляющих услуги генерации случайных чисел, в своих целях используют молнию: предсказать траекторию и место удара молнии практически невозможно. При большом желании и наличии мощных вычислительных машин, можно только распределить вероятность попадания молнии в то или иное место.
Таким образом, отвечая на вопрос, можно сказать, что для предсказания «случайного» числа, нужно понимать, с каким сайтом вы имеете дело. Если это очень старый сайт, то есть вариант понаблюдать за его поведением и результатами, и вывести алгоритм. Если это генератор псевдослучайных чисел, то можно попробовать понять, откуда сайт берёт первоначальные числа (как в примере с кубиком). Часто это количество запросов в каком-либо поисковике за единицу времени, либо количество посетителей сайта. Если речь о генераторе настоящих случайных чисел, то здесь с огромными усилиями можно лишь определить наиболее вероятный исход.
Как устроены генераторы чисел?
Чтобы понять, как действует генератор случайных чисел, нужно разобраться в его устройстве и в том, на чем он основывается. Генератор чисел создает определенный порядок абсолютно независящих друг от друга чисел, основываясь на определенных параметрах рассматриваемого элемента, процесса, действия и так далее. В связи с тем, что речь идет о случайных числах, то и параметры изменяются хаотично.
Существует много распространенных и достаточно примитивных примеров, на которых можно рассмотреть его устройство: подкидывание любой монеты, бросок игрального кубика и так далее.
Принцип устройства
В работе генератора случайных чисел активно задействован ряд теорий (в частности, теория хаоса). С этим и связана абсолютная непредсказуемость выпадения того или иного шарика в лототроне, определенной грани игральной кости, загаданной до броска стороны монетки. Однако стоит отметить, что и в науке такой аппарат играет важную роль: в первую очередь для статистических исследований.
Что такое случайность и как её создать?
Основным условием, крайне важным для соблюдения правильных и честных принципов работы системы ГСЧ, является абсолютно равная вероятность на выпадение любого из возможных чисел, которые только могут выпасть в созданной системе. При этом соблюдается полная независимость от того фактора, какие еще числа выпали до или после этого.
Это можно объяснить более простым языком: в генераторе истинно случайных чисел просто нельзя выстроить порядок и зависимость выпадающих цифр. Допустим, если вы бросаете первый раз шестигранную игральную кость, то у вас может выпасть абсолютно любое число от 1 до 6 с одинаковой вероятностью 16,(6)%. И независимо от того, какая цифра выпала, она с аналогичной вероятностью может повторно выпасть при втором, сотом, тысячном бросках.
Псевдослучайность
Также существует генератор псевдослучайных последовательностей. Несмотря на то, что на первый взгляд в нем тоже очевидно отсутствие закономерностей, подобный генератор с конечным числом внутренних состояний повторится, хотя это может произойти после очень длительной цепочки чисел.
Подробно о генераторах случайных и псевдослучайных чисел
Введение
Как отличить случайную последовательность чисел от неслучайной?
Чуть более сложный пример или число Пи
Последовательность цифры в числе Пи считается случайной. Пусть генератор основывается на выводе бит представления числа Пи, начиная с какой-то неизвестной точки. Такой генератор, возможно и пройдет «тест на следующий бит», так как ПИ, видимо, является случайной последовательностью. Однако этот подход не является критографически надежным — если криптоаналитик определит, какой бит числа Пи используется в данный момент, он сможет вычислить и все предшествующие и последующие биты.
Данный пример накладывает ещё одно ограничение на генераторы случайных чисел. Криптоаналитик не должен иметь возможности предсказать работу генератора случайных чисел.
Отличие генератора псевдослучайных чисел (ГПСЧ) от генератора случайных чисел (ГСЧ)
Источники энтропии используются для накопления энтропии с последующим получением из неё начального значения (initial value, seed), необходимого генераторам случайных чисел (ГСЧ) для формирования случайных чисел. ГПСЧ использует единственное начальное значение, откуда и следует его псевдослучайность, а ГСЧ всегда формирует случайное число, имея в начале высококачественную случайную величину, предоставленную различными источниками энтропии.
Энтропия – это мера беспорядка. Информационная энтропия — мера неопределённости или непредсказуемости информации.
Можно сказать, что ГСЧ = ГПСЧ + источник энтропии.
Уязвимости ГПСЧ
Линейный конгруэнтный ГПСЧ (LCPRNG)
Распространённый метод для генерации псевдослучайных чисел, не обладающий криптографической стойкостью. Линейный конгруэнтный метод заключается в вычислении членов линейной рекуррентной последовательности по модулю некоторого натурального числа m, задаваемой следующей формулой:
где a (multiplier), c (addend), m (mask) — некоторые целочисленные коэффициенты. Получаемая последовательность зависит от выбора стартового числа (seed) X0 и при разных его значениях получаются различные последовательности случайных чисел.
Для выбора коэффициентов имеются свойства позволяющие максимизировать длину периода(максимальная длина равна m), то есть момент, с которого генератор зациклится [1].
Пусть генератор выдал несколько случайных чисел X0, X1, X2, X3. Получается система уравнений
Решив эту систему, можно определить коэффициенты a, c, m. Как утверждает википедия [8], эта система имеет решение, но решить самостоятельно или найти решение не получилось. Буду очень признателен за любую помощь в этом направлении.
Предсказание результатов линейно-конгруэнтного метода
Основным алгоритмом предсказания чисел для линейно-конгруэнтного метода является Plumstead’s — алгоритм, реализацию, которого можно найти здесь [4](есть онлайн запуск) и здесь [5]. Описание алгоритма можно найти в [9].
Простая реализация конгруэнтного метода на Java.
Отправив 20 чисел на сайт [4], можно с большой вероятностью получить следующие. Чем больше чисел, тем больше вероятность.
Взлом встроенного генератора случайных чисел в Java
Многие языки программирования, например C(rand), C++(rand) и Java используют LСPRNG. Рассмотрим, как можно провести взлом на примере java.utils.Random. Зайдя в исходный код (jdk1.7) данного класса можно увидеть используемые константы
Метод java.utils.Randon.nextInt() выглядит следующим образом (здесь bits == 32)
Результатом является nextseed сдвинутый вправо на 48-32=16 бит. Данный метод называется truncated-bits, особенно неприятен при black-box, приходится добавлять ещё один цикл в brute-force. Взлом будет происходить методом грубой силы(brute-force).
Пусть мы знаем два подряд сгенерированных числа x1 и x2. Тогда необходимо перебрать 2^16 = 65536 вариантов oldseed и применять к x1 формулу:
до тех пор, пока она не станет равной x2. Код для brute-force может выглядеть так
Вывод данной программы будет примерно таким:
Несложно понять, что мы нашли не самый первый seed, а seed, используемый при генерации второго числа. Для нахождения первоначального seed необходимо провести несколько операций, которые Java использовала для преобразования seed, в обратном порядке.
И теперь в исходном коде заменим
crackingSeed.set(seed);
на
crackingSeed.set(getPreviousSeed(seed));
И всё, мы успешно взломали ГПСЧ в Java.
Взлом ГПСЧ Mersenne twister в PHP
Рассмотрим ещё один не криптостойкий алгоритм генерации псевдослучайных чисел Mersenne Twister. Основные преимущества алгоритма — это скорость генерации и огромный период 2^19937 − 1, На этот раз будем анализировать реализацию алгоритма mt_srand() и mt_rand() в исходном коде php версии 5.4.6.
Можно заметить, что php_mt_reload вызывается при инициализации и после вызова php_mt_rand 624 раза. Начнем взлом с конца, обратим трансформации в конце функции php_mt_rand(). Рассмотрим (s1 ^ (s1 >> 18)). В бинарном представление операция выглядит так:
10110111010111100111111001110010 s1
00000000000000000010110111010111100111111001110010 s1 >> 18
10110111010111100101001110100101 s1 ^ (s1 >> 18)
Видно, что первые 18 бит (выделены жирным) остались без изменений.
Напишем две функции для инвертирования битового сдвига и xor
Тогда код для инвертирования последних строк функции php_mt_rand() будет выглядеть так
Если у нас есть 624 последовательных числа сгенерированных Mersenne Twister, то применив этот алгоритм для этих последовательных чисел, мы получим полное состояние Mersenne Twister, и сможем легко определить каждое последующее значение, запустив php_mt_reload для известного набора значений.
Область для взлома
Если вы думаете, что уже нечего ломать, то Вы глубоко заблуждаетесь. Одним из интересных направлений является генератор случайных чисел Adobe Flash(Action Script 3.0). Его особенностью является закрытость исходного кода и отсутствие задания seed’а. Основной интерес к нему, это использование во многих онлайн-казино и онлайн-покере.
Есть много последовательностей чисел, начиная от курса доллара и заканчивая количеством времени проведенным в пробке каждый день. И найти закономерность в таких данных очень не простая задача.
Задание распределения для генератора псевдослучайных чисел
Для любой случайной величины можно задать распределение. Перенося на пример с картами, можно сделать так, чтобы тузы выпадали чаще, чем девятки. Далее представлены несколько примеров для треугольного распределения и экспоненциального распределения.
Треугольное распределение
Приведем пример генерации случайной величины с треугольным распределением [7] на языке C99.
Экспоненциальное распределение
Тесты ГПСЧ
Некоторые разработчики считают, что если они скроют используемый ими метод генерации или придумают свой, то этого достаточно для защиты. Это очень распространённое заблуждение. Следует помнить, что есть специальные методы и приемы для поиска зависимостей в последовательности чисел.
Одним из известных тестов является тест на следующий бит — тест, служащий для проверки генераторов псевдослучайных чисел на криптостойкость. Тест гласит, что не должно существовать полиномиального алгоритма, который, зная первые k битов случайной последовательности, сможет предсказать k+1 бит с вероятностью большей ½.
В теории криптографии отдельной проблемой является определение того, насколько последовательность чисел или бит, сгенерированных генератором, является случайной. Как правило, для этой цели используются различные статистические тесты, такие как DIEHARD или NIST. Эндрю Яо в 1982 году доказал, что генератор, прошедший «тест на следующий бит», пройдет и любые другие статистические тесты на случайность, выполнимые за полиномиальное время.
В интернете [10] можно пройти тесты DIEHARD и множество других, чтобы определить критостойкость алгоритма.
Что такое ГСЧ – как работает генератор случайных чисел
Генератор случайных чисел, как следует из названия, представляет собой процесс получения случайного числа каждый раз, когда это необходимо, без возможности установить шаблон из ранее сгенерированных чисел. Это число может быть сгенерировано либо алгоритмом, либо аппаратным устройством, и очень важно избежать любого предсказуемого результата.
Алгоритм генератора случайных чисел часто используется в видеоиграх, где он устанавливает разные результаты каждый раз, когда его запускают. Возможно, вы заметили, что даже если вы играете на одном уровне в игре, каждый раз, когда вы пытаетесь выполнить миссию, он не будет одинаковым. Различия не будут наблюдаться в локации или требованиях к миссии, но они будут наблюдаться в количестве приближающихся врагов и областях их появления, изменениях климата и различных препятствиях, которые встречаются между ними. Это делает игру более захватывающей и интересной.
В противном случае, после нескольких попыток игра покажется скучной, так как вы сможете предсказать события, которые произойдут дальше. Это может показаться простым, но для компьютера – генерировать случайные числа – это сложная задача, требующая следовать точным инструкциям, закодированным в нём.
Истинный ГСЧ против псевдо ГСЧ
Есть два типа генераторов случайных чисел: истинные и псевдо.
Какие приложения используют ГСЧ
Не во всех играх используется генератор случайных чисел, что делает их менее конкурентоспособными и часто утомительными, однако, новые игры почти всегда идут с генератором случайных чисел. Многие приложения и игры выигрывают от случайности, поскольку они могут приносить интерес и прибыль только в том случае, если они случайны:
Помимо игровых приложений, есть код случайных чисел в JavaScript, используемый разработчиками и кодировщиками во всём мире для включения генератора случайных чисел в их программы. У Google есть свой очень интересный инструмент, который также основан на теории случайных чисел JavaScript и может генерировать случайные числа. Этот инструмент может пригодиться, когда вы играете в игры с друзьями и семьей. Чтобы посмотреть ГСЧ Google, нажмите здесь.
Манипуляции с ГСЧ
Я уже обсуждал различия между истинным ГСЧ и псевдо ГСЧ и тот факт, что в играх используется псевдо ГСЧ, основанный на алгоритме. Некоторые увлеченные геймеры используют утилиты эмуляции для анализа игр и выявления лазеек, которые можно использовать для управления результатами, даже если используется алгоритм генератора случайных чисел.
ГСЧ на основе алгоритма использует начальное число, которое представляет собой комбинацию определенных факторов и генерирует результат в игре. Это применяемые законы математики, и поскольку 1+1 всегда равно 2, аналогично, если известны факторы в игре, которые приносят желаемый результат, то вы всегда можете достичь того же результата.
Например, если игра требует от игрока выбрать определенного персонажа с определенными усилениями, и результатом будет легкая битва с боссом, то этот шаблон будет постоянным, и все, кто выберет одни и те же варианты, будут иметь одинаковые результаты. Но, для обычного игрока это было бы невозможно, и псевдо-ГСЧ всегда казался бы истинным ГСЧ.
Почему геймеры ненавидят ГСЧ
Геймеров можно разделить на соревнующихся игроков, спидраннеров и средних игроков. Любой конкурентоспособный игрок, овладевший техникой игры и движениями, захочет бросить вызов другим игрокам и побеждать на основе навыков и, несомненно, возненавидит игру, если на результат повлияет генератор случайных чисел. Точно так же спидраннер хотел бы завершить игру как можно скорее, но алгоритм генератора случайных чисел включает тормоза, создавая каждый раз неизвестные и неожиданные сценарии в игре.
В идеале геймеры хотели бы уменьшить количество случаев, когда они сталкиваются со средством генерации случайных чисел в игре, чтобы держать весь игровой процесс и результат под своим контролем. Но, это возможно лишь до определенной степени. И когда геймер часами осваивает игрового персонажа и его движения, он больше всего расстраивается, когда случается что-то случайное, и вся стратегия нарушается. Иногда это тоже действует как благословение, но обычно это проклятие.
Кто такой RNGesus?
Обычные игроки, которые играют только для того, чтобы развлечься или скоротать время, не заботятся о результате игры. Но, опытные профессиональные игроки ненавидят проигрывать только потому, что удача была не в их пользу.
Игроки, которые проигрывают, часто винят в своих поражениях злой ГСЧ, который выгоден их противникам. Там где зло, должен быть Бог – RNGesus.
Среди геймеров во всем мире появился новый термин, RNGesus, который больше соответствует игре слов с «Иисусом». Поскольку Иисус Христос считается нашим спасителем в реальном мире, RNGesus – это вообразимая сущность, созданная для спасения игроков от пагубных последствий ГСЧ. Это нигде не доказывается, но началось как миф, а теперь распространилось по игровому сообществу, как лесной пожар.
Окончательный вердикт по ГСЧ – хорошо или плохо?
На этот вопрос сложно ответить, и определенно не может быть одного и того же ответа для всех. В то время как среднестатистические геймеры утверждают, что это хорошо, другим нравится соревновательный дух.
Алгоритм генератора случайных чисел действительно сохраняет непредсказуемость и интересность каждый раз, когда вы играете на одном уровне. Он стал важной частью многих игр, предлагая разнообразие, например, головоломки, карточные игры, ролевые игры и многие другие. Но, для геймеров, которые верят в навыки как в единственный способ пройти игру, ГСЧ подрывает их потенциал, когда вытаскивает что-то случайное из коробки.
Игры предназначены для развлечения и удовольствия. Если у вас хороший ГСЧ, вы сможете получить лучшие варианты, несмотря на низкие шансы. В случае плохого ГСЧ, вы получите худший результат, даже если вы играли в игру именно так, как должно. Правда в том, что это не то, что можно воспринимать так серьёзно, особенно если оно основано на алгоритме генератора случайных чисел.