как узнать код фотографии
Что можно узнать из метаданных фотографии
Метаданные фото – это информация, полезная в обычном случае, но опасная для тех, кто хочет обеспечить себе максимальную анонимность. Так называемые EXIF данные имеются у каждой фотографии, вне зависимости от того, с какого устройства она была сделана. И они могут рассказать не только о параметрах фотоаппарата/смартфона, с которого была сделана фотография, но и многое другое. Дату создания, геолокацию, информацию о собственнике кадра и не только может узнать любой, потратив на это всего несколько минут.
Сегодня мы объясним вам, как посмотреть EXIF данные фотографии и как удалить их в том случае, если вы хотите обеспечить себе приватность.
Как найти информацию по фотографии
Существует множество способов считать информацию по фотографии, вне зависимости от того, кто её владелец и где вы её нашли. Среди этих способов наибольшей популярностью пользуются варианты с браузером, онлайн сервисами и средствами Windows. Мы детально расскажем о каждом из них.
При помощи браузера
Поиск информации по фотографии при помощи браузера, пожалуй, самый простой и доступный способ. Чтобы узнать нужные данные по фото, вы можете использовать:
Узнаём EXIF в онлайн-сервисе
Мы предлагаем ознакомиться с сервисом, который позволяет быстро узнать EXIF фото, не требуя установки дополнительных расширений. Достаточно лишь загрузить фотографию на сервис или указать прямую ссылку на неё, а всё остальное он сделает сам.
Используем средства Windows для определения метаданных фото
Простейший способ для тех, кто не хочет искать продвинутые способы в интернете. Если у вас нет под рукой других инструментов, то просто кликните правой кнопкой мыши по фотографии, выберите «Properties» (свойства) и найдите в открывшемся окне вкладку «Details» (детали). В этой вкладке вы узнаете параметры фотографии, её геолокацию, дату и другие данные.
Как редактировать или удалить скрытые данные EXIF?
Если вы не хотите, чтобы о ваших фото, загруженных в сеть, третье лицо могло получить какую-либо информацию – измените или полностью удалите её. Оба способа требуют минимальных затрат времени, взамен гарантируя максимальную безопасность и анонимность вашего фото в сети.
Удаляем все или некоторые данные фото
Самый простой способ удалить скрытые данные в фотографии – использовать системные инструменты Windows. Давайте пошагово рассмотрим как это сделать:
Откройте свойства фотографии, перейдите во вкладку «подробнее» и вы увидите внизу пункт «удаление свойств и личной информации».
Клик по нему отправит вас на вкладку, где вы сможете самостоятельно выбрать данные, которые нужно удалить.
Если вы не хотите потерять эти данные, можно создать копию фотографии с удаленными EXIF-данными, сохранив при этом оригинал. Для этого нужно выбрать пункт «создать копию, удалив все возможные свойства». Пункт «удалить все свойства для этого файла» безвозвратно удалит все EXIF-данные у оригинала.
Самостоятельно изменяем EXIF фотографии
Наименее требовательный к профессиональным навыкам способ – использовать онлайн сервисы. Хорошим примером такого сервиса является IMGonline, который позволяет быстро выбрать нужные данные и заменить их необходимыми вам параметрами.
Подводим итоги
Скрытые данные фото – это удобный способ узнать информацию не только для вас, но и для злоумышленников. Сегодня мы рассказали, что представляют из себя эти скрытые данные, как по ним обнаружить геолокацию, дату и другие параметры фото, и как можно обезопасить себя от подобных действий со стороны третьих лиц.
Все приведённые нами способы максимально просты и не требуют дополнительных знаний. Это значит, что вы, дорогие читатели, сможете воспользоваться ими без какого-либо опыта и многостраничных инструкций. В большинстве приведённых способов достаточно несколько раз кликнуть мышкой или скачать расширение для того, чтобы получить исчерпывающие данные.
Рассказывайте своим друзьям, делитесь ссылкой на статью в соц.сетях и мессенджерах. Обеспечьте безопасность и анонимность ваших данных в сети, начиная с самых элементарных вещей!
Картинка, которая одновременно является кодом на Javascript
Изображения обычно хранятся как двоичные файлы, а файл Javascript по сути является обычным текстом. Оба типа файлов должны следовать собственным правилам: изображения имеют конкретный формат файла, определённым образом кодирующий данные. Для того, чтобы файлы Javascript можно было исполнять, они должны следовать определённому синтаксису. Я задался вопросом: можно ли создать файл изображения, одновременно являющийся допустимым синтаксисом Javascript, чтобы его можно было исполнять?
Прежде чем вы продолжите чтение, крайне рекомендую изучить эту песочницу кода с результатами моих экспериментов:
Если вы хотите посмотреть изображение и изучить его самостоятельно, то скачать его можно отсюда:
Выбор подходящего типа изображения
К сожалению, изображения содержат множество двоичных данных, которые при интерпретации в качестве Javascript будут выдавать ошибку. Поэтому моя первая мысль заключалась в следующем: что если просто поместить все данные изображения в большой комментарий, примерно так:
Этот заголовок файла привёл меня к следующей идее: что если использовать эту последовательность байтов как имя переменной и присвоить ей значение длинной строки:
К сожалению, большинство последовательностей байтов в заголовках файлов изображений содержат непечатаемые символы, которые нельзя использовать в именах переменных. Но есть один формат, который мы можем использовать: GIF. Блок заголовка GIF имеет вид 47 49 46 38 39 61, что удобно преобразуется в ASCII в строку GIF89a — абсолютно допустимое имя переменной!
Выбор подходящих размеров изображения
Теперь, когда мы нашли формат изображения, начинающийся с допустимого имени переменной, нам нужно добавить символы знака равенства и обратного апострофа (backtick). Следовательно следующими четырьмя байтами файла будут: 3D 09 60 04
Первые байты изображения
В формате GIF четыре байта после заголовка определяют размеры изображения. Нам нужно уместить в них 3D (знак равенства) и 60 (обратный апостроф, открывающий строку). В GIF используется порядок little endian, поэтому второй и четвёртый символы имеют огромное влияние на размеры изображения. Они должны быть как можно меньше, чтобы изображение не получилось шириной и высотой в десятки тысяч пикселей. Следовательно, нам нужно хранить большие байты 3D и 60 в наименее значимых байтах.
Наименьший пробельный символ — это 09 (символ горизонтальной табуляции). Он даёт нам ширину изображения 3D 09, что в little endian равно 2365; немного шире, чем бы мне хотелось, но всё равно вполне приемлемо.
Для второго байта высоты можно выбрать значение, дающее хорошее соотношение сторон. Я выбрал 04, что даёт нам высоту 60 04, или 1120 пикселей.
Засовываем в файл скрипт
Пока наш исполняемый GIF почти ничего не делает. Он просто присваивает глобальной переменной GIF89a длинную строку. Мы хотим, чтобы происходило что-нибудь интересное! Основная часть данных внутри GIF используется для кодирования изображения, поэтому если мы попробуем вставить туда Javascript, то изображение, вероятно, будет сильно искажённым. Но по какой-то причине формат GIF содержит нечто под названием Comment Extension. Это место для хранения метаданных, которые не интерпретируются декодером GIF — идеальное место для нашей Javascript-логики.
Это расширение для комментариев находится сразу после таблицы цветов GIF. Поскольку мы можем поместить туда любое содержимое, можно запросто закрыть строку GIF89a, добавить весь Javascript, а затем начать многострочный блок комментария, чтобы остальная часть изображения не влияла на парсер Javascript.
В конечном итоге наш файл может выглядеть следующим образом:
Однако существует небольшое ограничение: хотя сам блок комментария может иметь любой размер, он состоит из нескольких подблоков, и максимальный размер каждого из них составляет 255. Между подблоками есть один байт, определяющий длину следующего подблока. Поэтому чтобы уместить туда большой скрипт, его нужно разделить на мелкие фрагменты, примерно вот так:
Шестнадцатеричные коды в комментариях — это байты, определяющие размер следующего подблока. Они не относятся к Javascript, но обязательны для формата файла GIF. Чтобы они не мешали остальной части кода, их нужно поместить в комментарии. Я написал небольшой скрипт, обрабатывающий фрагменты скрипта и добавляющий их в файл изображения:
Подчищаем двоичные данные
Теперь, когда у нас есть базовая структура, нам нужно сделать так, чтобы двоичные данные изображения не испортили синтаксис кода. Как говорилось в предыдущем разделе, файл состоит из трёх разделов: в первом выполняется присваивание значения переменной GIF89a, второй — это код на Javascript, а третий — комментарий из нескольких строк.
Давайте взглянем на первую часть с присвоением значения переменной:
Боремся с искажениями
В конце Javascript-кода мы открыли многострочный комментарий, чтобы двоичные данные изображения не влияли на парсинг Javascript:
Завершаем файл
Нам осталась последняя операция — завершение файла. Файл должен завершаться байтами 00 3B, поэтому нам нужно завершить комментарий раньше. Поскольку это конец файла и любые потенциальные повреждения будут не особо заметны, я просто завершил комментарий из блоков и добавил однострочный комментарий, чтобы конец файла не вызывал проблем при парсинге:
Уговариваем браузер исполнить изображение
Refused to execute script from ‘http://localhost:8080/image.gif’ because its MIME type (‘image/gif’) is not executable. [Отказ от исполнения скрипта из ‘http://localhost:8080/image.gif’, потому что его MIME-тип не является исполняемым.]
То есть браузер справедливо говорит: «Это изображение, я не буду его исполнять!». И в большинстве случаев это вполне уместно. Но мы всё равно хотим его исполнить. Решение заключается в том, чтобы просто не говорить браузеру, что это изображение. Для этого я написал небольшой сервер, передающий изображение без информации заголовка.
Без информации о MIME-типе из заголовка браузер не знает, что это изображение и делает именно то, что лучше всего подходит в контексте: отображает его как изображение в теге или исполняет как Javascript в теге
Декодирование JPEG для чайников
[FF D8]
Вам когда-нибудь хотелось узнать как устроен jpg-файл? Сейчас разберемся! Прогревайте ваш любимый компилятор и hex-редактор, будем декодировать это:
Специально взял рисунок поменьше. Это знакомый, но сильно пережатый favicon Гугла:
Последующее описание упрощено, и приведенная информация не полная, но зато потом будет легко понять спецификацию.
Даже не зная, как происходит кодирование, мы уже можем кое-что извлечь из файла.
[FF D8] — маркер начала. Он всегда находится в начале всех jpg-файлов.
Следом идут байты [FF FE]. Это маркер, означающий начало секции с комментарием. Следующие 2 байта [00 04] — длина секции (включая эти 2 байта). Значит в следующих двух [3A 29] — сам комментарий. Это коды символов «:» и «)», т.е. обычного смайлика. Вы можете увидеть его в первой строке правой части hex-редактора.
Немного теории
Закодированные данные располагаются поочередно, небольшими частями:
Каждый блок Yij, Cbij, Crij — это матрица коэффициентов ДКП (так же 8×8), закодированная кодами Хаффмана. В файле они располагаются в таком порядке: Y00Y10Y01Y11Cb00Cr00Y20.
Чтение файла
Файл поделен на секторы, предваряемые маркерами. Маркеры имеют длину 2 байта, причем первый байт [FF]. Почти все секторы хранят свою длину в следующих 2 байта после маркера. Для удобства подсветим маркеры:
Маркер [FF DB]: DQT — таблица квантования
Оставшимися 64-мя байтами нужно заполнить таблицу 8×8.
Приглядитесь, в каком порядке заполнены значения таблицы. Этот порядок называется zigzag order:
Маркер [FF C0]: SOF0 — Baseline DCT
Этот маркер называется SOF0, и означает, что изображение закодировано базовым методом. Он очень распространен. Но в интернете не менее популярен знакомый вам progressive-метод, когда сначала загружается изображение с низким разрешением, а потом и нормальная картинка. Это позволяет понять что там изображено, не дожидаясь полной загрузки. Спецификация определяет еще несколько, как мне кажется, не очень распространенных методов.
Находим Hmax=2 и Vmax=2. Канал i будет прорежен в Hmax/Hi раз по горизонтали и Vmax/Vi раз по вертикали.
Маркер [FF C4]: DHT (таблица Хаффмана)
Эта секция хранит коды и значения, полученные кодированием Хаффмана.
Следующие 16 значений:
Количество кодов означает количество кодов такой длины. Обратите внимание, что секция хранит только длины кодов, а не сами коды. Мы должны найти коды сами. Итак, у нас есть один код длины 1 и один — длины 2. Итого 2 кода, больше кодов в этой таблице нет.
С каждым кодом сопоставлено значение, в файле они перечислены следом. Значения однобайтовые, поэтому читаем 2 байта:
Далее в файле можно видеть еще 3 маркера [FF C4], я пропущу разбор соответствующих секций, он аналогичен вышеприведенному.
Построение дерева кодов Хаффмана
Мы должны построить бинарное дерево по таблице, которую мы получили в секции DHT. А уже по этому дереву мы узнаем каждый код. Значения добавляем в том порядке, в каком указаны в таблице. Алгоритм прост: в каком бы узле мы ни находились, всегда пытаемся добавить значение в левую ветвь. А если она занята, то в правую. А если и там нет места, то возвращаемся на уровень выше, и пробуем оттуда. Остановиться нужно на уровне равном длине кода. Левым ветвям соответствует значение 0, правым — 1.
Деревья для всех таблиц этого примера:
В кружках — значения кодов, под кружками — сами коды (поясню, что мы получили их, пройдя путь от вершины до каждого узла). Именно такими кодами закодировано само содержимое рисунка.
Маркер [FF DA]: SOS (Start of Scan)
Байт [DA] в маркере означает — «ДА! Наконец-то то мы перешли к финальной секции!». Однако секция символично называется SOS.
[00], [3F], [00] — Start of spectral or predictor selection, End of spectral selection, Successive approximation bit position. Эти значения используются только для прогрессивного режима, что выходит за рамки статьи.
Отсюда и до конца (маркера [FF D9]) закодированные данные.
Закодированные данные
Последующие значения нужно рассматривать как битовый поток. Первых 33 бит будет достаточно, чтобы построить первую таблицу коэффициентов:
Нахождение DC-коэффициента
1) Читаем последовательность битов (если встретим 2 байта [FF 00], то это не маркер, а просто байт [FF]). После каждого бита сдвигаемся по дереву Хаффмана (с соответствующим идентификатором) по ветви 0 или 1, в зависимости от прочитанного бита. Останавливаемся, если оказались в конечном узле.
2) Берем значение узла. Если оно равно 0, то коэффициент равен 0, записываем в таблицу и переходим к чтению других коэффициентов. В нашем случае — 02. Это значение — длина коэффициента в битах. Т. е. читаем следующие 2 бита, это и будет коэффициент:
Нахождение AC-коэффициентов
1) Аналогичен п. 1, нахождения DC коэффициента. Продолжаем читать последовательность:
2) Берем значение узла. Если оно равно 0, это означает, что оставшиеся значения матрицы нужно заполнить нулями. Дальше закодирована уже следующая матрица. В нашем случае значение узла: 0x31.
Читать AC-коэффициенты нужно пока не наткнемся на нулевое значение кода, либо пока не заполнится матрица.
В нашем случае мы получим:
Вы заметили, что значения заполнены в том же зигзагообразном порядке? Причина использования такого порядка простая — так как чем больше значения v и u, тем меньшей значимостью обладает коэффициент Svu в дискретно-косинусном преобразовании. Поэтому, при высоких степенях сжатия малозначащие коэффициенты обнуляют, тем самым уменьшая размер файла.
Аналогично получаем еще 3 матрицы Y-канала…
Но! Закодированные DC-коэффициенты — это не сами DC-коэффициенты, а их разности между коэффициентами предыдущей таблицы (того же канала)! Нужно поправить матрицы:
Теперь порядок. Это правило действует до конца файла.
… и по матрице для Cb и Cr:
Вычисления
Квантование
Вы помните, что матрица проходит этап квантования? Элементы матрицы нужно почленно перемножить с элементами матрицы квантования. Осталось выбрать нужную. Сначала мы просканировали первый канал. Он использует матрицу квантования 0 (у нас она первая из двух). Итак, после перемножения получаем 4 матрицы Y-канала:
… и по матрице для Cb и Cr.
Обратное дискретно-косинусное преобразование
Формула не должна доставить сложностей. Svu — наша полученная матрица коэффициентов. u — столбец, v — строка. Cx = 1/√2 для x = 0, а в остальных случаях = 1. syx — непосредственно значения каналов.
Приведу результат вычисления только первой матрицы канала Y (после обязательного округления):
Ко всем полученным значениям нужно прибавить по 128, а затем ограничить их диапазон от 0 до 255:
Например: 138 → 266 → 255, 92 → 220 → 220 и т. д.
YCbCr в RGB
4 матрицы Y, и по одной Cb и Cr, так как мы прореживали каналы и 4 пикселям Y соответствует по одному Cb и Cr. Поэтому вычислять так: YCbCrToRGB(Y[y,x], Cb[y/2, x/2], Cr[y/2, x/2]):
Вот полученные таблицы для каналов R, G, B для левого верхнего квадрата 8×8 нашего примера:
Конец
Вообще я не специалист по JPEG, поэтому вряд ли смогу ответить на все вопросы. Просто когда я писал свой декодер, мне часто приходилось сталкиваться с различными непонятными проблемами. И когда изображение выводилось некорректно, я не знал где допустил ошибку. Может неправильно проинтерпретировал биты, а может неправильно использовал ДКП. Очень не хватало пошагового примера, поэтому, надеюсь, эта статья поможет при написании декодера. Думаю, она покрывает описание базового метода, но все-равно нельзя обойтись только ей. Предлагаю вам ссылки, которые помогли мне:
Код картинки HTML
Код для вывода изображения в HTML, выглядит следующим образом:
Для вывода картинки в XHTML, в коде добавляется слеш с отступом:
Все файлы изображений, используемых на WEB-страницах, обычно хранятся в папках, которые имеют имена «img» или «images». В тех случаях, когда речь идет об изображениях, формирующих дизайн сайта, то для них лучше предусмотреть специальную папку например – « design ».
Добавление рисунка
В тех случаях, когда файл располагается в одной папке со страницей, то его адрес можно не указывать. Достаточно просто имени и расширения графического файла.
Указание размеров картинки
Чтобы средствами HTML можно было изменять размеры рисунков, тег img > имеет такие атрибуты, как heigh (высота) и width (ширина). Для указания их значений применяются пиксели, причем таким образом, чтобы сами аргументы совпадали с теми физическими размерами, которые имеет картинка.
В коде HTML в обязательном порядке следует задавать размеры, которые имеет картинка. Благодаря этому ее загрузка несколько ускорится, поскольку браузер заблаговременно будет располагать информацией о том, какой размер будет иметь изображение. Это позволит ему производить загрузку другого содержимого страницы не дожидаясь того момента, когда изображение загрузится полностью.
Что касается задания значения изображений, то их можно указывать как в пикселях, так и в процентах. В первом случае размер изображения не зависит от разрешения экрана и всегда будет постоянным, а во втором он будет меняться в зависимости от разрешения экрана. К примеру:
Альтернативный текст
Чтобы создать альтернативный текст, следует применять атрибут alt для тега img >. Альтернативный текст необходим для того, чтобы картинки были обозначены некоей текстовой информацией в тех случаях, когда в браузере показ изображений отключен, или же на период их загрузки. По его содержанию можно судить о том, что изображено на картинке, причем появляется он до ее загрузки. После того как загрузка картинки завершена, альтернативный текст исчезает.
Всплывающая подсказка
Эта подсказка, как правило, применяется для того, чтобы при наведении курсора мышки на картинку появился краткий комментарий к ее содержанию. Чтобы добавить всплывающую подсказку, используют параметр title тега img >. Его значением является заключенный в кавычки текст.
LiveInternetLiveInternet
—Цитатник
Химчистка организма по методу Валентины Кондаковой Лет 10 назад мне посчаст.
Привет! Привет… Ну, здравствуй, как живёшь? Да как всегда, гоню вперёд на красный. А как сама.
Потеряла свой пост, теперь цитирую:)) (Мнение специалиста по биоэнергетике) Почему пете.
—Музыка
—Ссылки
—Метки
—Рубрики
—Фотоальбом
—Видео
—
—Поиск по дневнику
—Подписка по e-mail
—Интересы
—Друзья
—Постоянные читатели
—Статистика
Как загружать картинки по коду?
КАК КОПИРОВАТЬ КОД КАРТИНКИ
|