как узнать коэффициент трансформатора
Как рассчитать коэффициент трансформации
Коэффициентом трансформации «k» называется отношение напряжения U1 на концах первичной обмотки трансформатора к напряжению U2 на выводах его вторичной обмотки, определенному на холостом ходу (когда вторичных обмоток несколько, то коэффициентов k – тоже несколько, они определяются в этом случае по очереди). Это отношение принимается равным соотношению количеств витков в соответствующих обмотках.
Коэффициент трансформации имеет очень важное значение как величина, при помощи которой вторичная обмотка приводится к первичной. В эксплуатационных условиях имеет большое значение коэффициент трансформации напряжения, под которым понимают отношение номинальных напряжений трансформатора.
Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга.
В идеале потери мощности (на токи Фуко и на нагрев проводников обмоток) в трансформаторе полностью отсутствуют, поэтому и коэффициент трансформации для идеальных условий рассчитывается простым делением напряжений на выводах обмоток. Но ничего идеального в мире нет, поэтому иногда необходимо прибегать к замерам.
В реальности мы всегда имеем дело с повышающим или с понижающим трансформатором. У трансформаторов напряжения повышающих коэффициент трансформации всегда меньше единицы (и больше нуля), у понижающих — больше единицы. То есть коэффициент трансформации свидетельствует о том, во сколько раз ток вторичной обмотки под нагрузкой отличается от тока первичной обмотки, или во сколько крат напряжение вторичной обмотки меньше подаваемого на первичную обмотку.
Например, понижающий трансформатор ТП-112-1 имеет по паспорту коэффициент трансформации 7,9/220 = 0,036, значит номинальному току (по паспорту) вторичной обмотки в 1,2 ампера соответствует ток первичной обмотки 43 мА.
Зная коэффициент трансформации, измерив его например двумя вольтметрами на холостом ходу, можно убедиться в правильности соотношения количеств витков в обмотках. Если зажимов несколько, то измерения проводят на каждом ответвлении. Измерения такого рода помогают обнаруживать поврежденные обмотки, определять их полярности.
Есть несколько путей определения коэффициента трансформации:
путь непосредственного измерения напряжений вольтметрами;
методом моста переменного тока (например портативным прибором типа «коэффициент» для анализа параметров трехфазных и однофазных трансформаторов);
по паспорту данного трансформатора.
Если проверяется трехфазный трансформатор, то измерения следует провести для двух пар обмоток с наименьшим током КЗ. Когда трансформатор имеет выводы, часть которых скрыта под кожухом, то значение коэффициента трансформации определяется только для тех концов, которые доступны снаружи для присоединения приборов.
Если трансформатор однофазный, то рабочий коэффициент трансформации легко рассчитать, разделив напряжение приложенное к первичной обмотке, на в этот же момент измеренное вольтметром напряжение на вторичной обмотке (с подключенной нагрузкой ко вторичной цепи).
В каждом случае нельзя подавать на обмотки напряжение существенно превосходящее номинальное значение, указанное в паспорте, ведь тогда погрешность измерения окажется высокой из-за потерь даже на холостом ходу.
Наилучший метод — измерение соотношений напряжений между вторичной и первичной обмотками с применением высокоточных вольтметров (класса точности максимум 0,5). Еще лучше, если есть возможность, применять специальный прибор типа «коэффициент-3» — универсальный измеритель коэффициента трансформации, который не потребует присоединения к трансформатору дополнительных источников сетевого напряжения.
Для анализа трансформаторов тока, для расчета его коэффициента трансформации, собирают цепь, где ток величиной от 20 до 100 % номинала пропускают по первичной обмотке трансформатора, при этом измеряется и вторичный ток.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Советы электрика
Как определить коэффициент трансформатора тока
Если понравилась статья- нажмите пожалуйста кнопку +1
Иногда бывает так, что попадает в руки трансформатор тока “без всяких опознавательных знаков”, а нужно узнать какой у него коэффициент.
Для начала расскажу что такое коэффициент трансформатора тока?- попробую объяснить “на пальцах”. По своему принципу действия трансформатор тока (далее ТТ) “трансформирует”, то есть понижает ток.
И есть специальный термин “коэффициент трансформации ТТ”- именно он определяет во сколько раз уменьшается электрический ток.
Это и есть коэффициент ТТ (обозначается Кт).
Поэтому если у нас есть ТТ с неизвестным Кт то необходимо через его первичную обмотку пропустить ток ( закоротив при этом обязательно вторичную обмотку ) и измерить прибором какой величины электрический ток проходит при этом по вторичной обмотке.
Затем первичный ток (который подавали на первичную обмотку) делим на ток, измеренный во вторичной обмотке и получим искомое значение- коэффициент ТТ.
Для подключения измерительных приборов (амперметров, ваттметров, электросчетчиков) в основном используется значение вторичного тока 5 Ампер.
Это означает что в пределе до 5 Ампер ТТ измеряет ток пропорционально изменению первичного тока с заданной погрешностью измерения- для этого у ТТ есть такое понятие “класс точности”.
Если вторичный ток будет выше 5 ампер- точность измерения резко снижается. Для подключения электросчетчиков используют стандартные значения Кт: 25/5, 50/5, 75/5, 100/5 и так далее. Первая цифра обозначает номинальный первичный ток, на который рассчитан ТТ, вторая- номинальный вторичный ток.
Возьмем для примера ТТ 100/5.Кт=100:5=20.
При первичном токе в 100 Ампер на вторичной обмотке ТТ будет протекать ток 5 Ампер.
То есть значение тока понижается в 20 раз. При токе в первичной обмотке 60 Ампер- ток во вторичной будет снова меньше в 20 раз и составит 3 Ампера, соответственно при 20 Амперах будет 1 Ампер ну и так далее.
Здесь следует отметить что ТТ надо применять при первичной нагрузке близкой к номинальной. То есть если вы измеряете ток в пределах 15-20 Ампер, то надо применять ТТ 25/5 с Кт=5. При измерении тока в 70-120А- берем ТТ 150/5 с Кт=30.
Коэффициент трансформации тока и примеры его расчетов
Все трансформаторы тока обладают рядом характеристик, которые позволяют использовать устройство в той или иной ситуации в зависимости от индивидуальных целей. Выбор конкретного трансформирующего прибора обусловлен в том числе и коэффициентом трансформатора тока. Как рассчитать эту величину и применить ее на практике? Рассмотрим основные виды трансформаторов этого типа.
Базовая классификация устройств трансформаторного тока
Это очень большая группа приборов, которая может делиться на различные группы. Среди самых распространенных:
Трансформаторы тока с литой изоляцией: а) — многовитковый, б) — одновитковый, в) — шинный
Классификация в зависимости от коэффициента трансформации ↑
Еще один немаловажный момент при выборе нужного трансформатора — это коэффициент трансформации тока (Кт).
По количеству коэффициентов трансформаторы тока можно определять как:
Как выбрать трансформатор тока по коэффициенту трансформации? ↑
При выборе такого типа трансформаторных устройств существует ряд определенных ограничений и правил установки дополнительного оборудования. Так, например, установка трансформатора тока, который имеет завышенный Кт, не желательна. При повышенном коэффициенте допускается установка приборов учета непосредственно на приемном вводе. Если же речь о силовых приборах трансформации, то счетчики следует монтировать со стороны напряжения с самым низким значением.
Сегодня на рынке самыми популярными являются именно трансформаторы с одним КТ, так как этот показатель у устройства гарантированно не меняется на протяжении всего времени эксплуатации.
Как определить коэффициент трансформации самостоятельно? ↑
Как правило такие параметры обязательно указываются в документации, прилагающейся к трансформатору, а также в обязательном порядке обозначаются на оборудовании или корпусе устройства. Но бывает, что Кт трансформатора тока необходимо определить самостоятельно, имея только данные, полученные эмпирическим путем. Как это сделать?
Через первичную обмотку такого устройства необходимо пропустить ток, замкнув накоротко вторичную обмотку. Затем соответствующим прибором нужно измерить величину электрического тока, который проходит во время эксперимента по вторичной обмотке.
Первичная и вторичная обмотки.
После этого, следует значение первичного тока, которое было подано на первичную обмотку, разделить на значение тока, полученное в результате наших замеров во вторичной обмотке. Частное и будет искомым коэффициентов трансформации.
Особенности расчетов коэффициента трансформации ↑
Расчет отношений первичного и вторичного токов может вестись в двух направлениях в зависимости от задач, которые стоят перед специалистом.
Коэффициент трансформации трансформатора тока можно разделить на:
К примерам стандартных величин коэффициента ТТ можно отнести: 150/5 (N=30), 600/5 (N=120), 1000/5 (N=200) и 100/1 (N=100).
Примеры расчетов ↑
Рассмотрим принцип расчета потребления на примере трансформатора тока с коэффициентов трансформации 100/5. Как определить коэффициент трансформации трансформатора тока? Если вы сняли показания счетчика по учету электроэнергии и значение показаний оказалось равно 100 кВт/часов, при этом прибор используется с трансформатором 100/5. То расчет фактического потребления не пониженных значений следует производить следующим образом:
Сперва следует узнать во сколько раз ваш трансформатор снижает ток нагрузки. Для этого нужно просто 100 разделить на 5 — вы получите значение коэффициента — 20.
Узнать реально существующий расход электроэнергии можно, взяв коэффициент и умножив его на значение вашего прибора учета, то есть на 100 кВт. Реальное потребление составило 2000 кВт/часов.
Особенности значений, получаемых при измерении коэффициента трансформации ↑
Измеряя коэффициент трансформации ТТ, следует знать, что допустимые отклонения полученного значения от прописанных в документации или показателей аналогичного полностью исправного прибора не должны быть более 2 процентов.
Особенностью замеров у встроенных устройствах является то, что все показания снимаются только на ответвлениях, которые являются рабочими. Остальные же части обмоток в расчет не берутся и не проверяются.
Разделительное трансформирующее устройство на вторичной обмотке может создавать напряжение около 5В, а значение тока должно быть около 1000А.
На что еще обратить внимание при выборе трансформатора? ↑
Не забывайте, что любое оборудование также имеет свой срок «годности». Потому, при покупке обязательно проверьте год и квартал выпуска вашего трансформатора. Напомним, что межповерочные интервалы у всех ТТ должны составлять не более 4 лет с момента изготовления.
Разновидности трансформаторов тока.
Чтобы избежать покупки просроченного оборудования, обязательно сверьте данные, которые указаны в паспорте изделия и на шильдике, закрепленном на корпусе трансформатора. Они должны полностью совпадать.
Если вы приобретаете трехфазный счетчик, то с момента выпуска и до пломбировки должно пройти не более года иначе вам придется потратить дополнительные средства, оплачивая государственную проверку или покупку более «свежего» прибора учета. Чтобы проверить дату, обратите внимание на свинцовую пломбу — там указан квартал выпуска римскими цифрами.
Что такое коэффициент трансформации — от чего зависит и что показывает
Для преобразования электроэнергии в технике применяют трансформаторы (ТР). Важнейшим параметром каждого ТР является его коэффициент трансформации (Кт). Чтобы понять, что такое коэффициент трансформации, необходимо рассмотреть принцип работы ТР.
Что такое коэффициент трансформации
Трансформаторы могут предназначаться для преобразования напряжения, тока или для развязки электрических цепей. Основными элементами конструкции являются магнитопровод, состоящий из стальных пластинок, и несколько обмоток из провода.
Преобразование — это изменение значения какого-либо из параметров цепи в сторону увеличения или уменьшения.
В работе ТР используется явление электромагнитной индукции. Если к первичной обмотке с числом витков N1 подвести переменное напряжение (U1), в конструкции возникает переменное магнитное поле (МП), которое в основном концентрируется в магнитопроводе. При этом в другой (вторичной) обмотке, имеющей N2 витков, появляется электродвижущая сила (ЭДС).
Обе обмотки обладают незначительным сопротивлением и большой индуктивностью
От чего зависит величина электродвижущей силы
Величина этой ЭДС (U2) зависит от величины напряжения U1 и соотношения витков первичной и вторичной обмоток, то есть: U2=U1(N2/ N1).
При этом отношение количества витков вторичной и первичной обмоток Кт данного трансформатора и обозначается n:
n= N2/ N1. Таким образом, коэффициент трансформации — величина, показывающая масштабирующую характеристику ТР относительно какого-нибудь параметра электрической цепи.
Для силовых трансформаторов ГОСТ 16110–82 определяет коэффициент трансформации как «отношение напряжений на зажимах двух обмоток в режиме холостого хода» и «принимается равным отношению чисел их витков»
Классификация
ТР могут быть понижающими или повышающими.
В понижающем ТР Кт n 1 и, соответственно, U2 > U1. Трансформаторы повышающего типа используются в промышленности. Например, типа ТП-1 повышают напряжение с 220 В до 380 В.
Как определить коэффициент трансформации на видео
Коэффициент трансформации является важнейшим параметром трансформатора. Он определяется соотношением чисел витков обмоток трансформатора. В зависимости от величины Кт трансформатор может повышать или понижать входное переменное напряжение.
Определение коэффициента трансформации силовых трансформаторов
Коэффициентом трансформации (К) называется отношение напряжения обмотки ВН к напряжению обмотки НН при холостом ходе трансформатора:
Для трехобмоточных трансформаторов коэффициентом трансформации является отношение напряжений обмоток ВН/СН, ВН/НН и СН/НН.
Значение коэффициента трансформации позволяет проверить правильное число витков обмоток трансформатора, поэтому его определяют на всех ответвлениях обмоток и для всех фаз. Эти измерения, кроме проверки самого коэффициента трансформации, дают возможность проверить правильность установки переключателя напряжения на соответствующих ступенях, а также целость обмоток.
Если трансформатор монтируется без вскрытия и при этом ряд ответвлений, недоступен для измерений, определение коэффициента трансформации производится только для доступных ответвлений.
При испытании трехобмоточных трансформаторов коэффициент трансформации достаточно проверить для двух пар обмоток, причем измерения рекомендуется проводить на тех обмотках, для которых напряжение короткого замыкания наименьшее.
В паспорте каждого трансформатора даются номинальные напряжения обеих обмоток, относящиеся к режиму холостого хода. Поэтому номинальный коэффициент трансформации можно легко определить по их отношению.
Измеренный коэффициент трансформации на всех ступенях переключателя ответвлений не должен отличаться более чем на 2 % от коэффициента трансформации на том же ответвлении на других фазах или от паспортных данных, или от данных предыдущих измерений. В случае более значительного отклонения должна быть выяснена его причина. При отсутствии виткового замыкания трансформатор может быть введен в работу.
Коэффициент трансформации определяют следующими методами:
а) двух вольтметров;
б) моста переменного тока;
в) постоянного тока;
г) образцового (стандартного) трансформатора и др.
Коэффициент трансформации рекомендуется определять методом двух вольтметров (рис. 1).
Принципиальная схема для определения коэффициента трансформации методом двух вольтметров для однофазных трансформаторов дана на рис. 1,а. Напряжение, подводимое к двум обмоткам трансформатора, одновременно измеряют двумя разными вольтметрами.
При испытании трехфазных трансформаторов одновременно измеряют линейные напряжения, соответствующие одноименным зажимам обеих проверяемых обмоток. Подводимое напряжение не должно превышать номинального напряжения трансформатора и быть чрезмерно малым, чтобы на результаты измерений не могли повлиять ошибки вследствие потери напряжения в обмотках от тока холостого хода и тока, обусловленного присоединением измерительного прибора к зажимам вторичной обмотки.
Рис. 1. Метод двух вольтметров для определения коэффициентов трансформации: а – для двухобмоточных и б – трехобмоточных трансформаторов
Подводимое напряжение должно быть от одного (для трансформаторов большой мощности) до нескольких десятков процентов номинального напряжения (для трансформаторов небольшой мощности), если испытания проводятся с целью проверки паспортных данных трансформаторов.
В большинстве случаев к трансформатору подводят напряжение от сети 380 В. В случае необходимости вольтметр присоединяется через трансформатор напряжения или включается с добавочным сопротивлением. Классы точности измерительных приборов – 0,2–0,5. Допускается присоединять вольтметр V1 к питающим проводам, а не к вводам трансформатора, если это не отразится на точности измерений из-за падения напряжения в питающих проводах.
При испытании трехфазных трансформаторов симметричное трехфазное напряжение подводят к одной обмотке и одновременно измеряют линейные напряжения на линейных зажимах первичной и вторичной обмоток.
При измерении фазных напряжений допускается определение коэффициента трансформации по фазным напряжениям соответствующих фаз. При этом проверку коэффициента трансформации производят при однофазном или трехфазном возбуждении трансформатора.
Если коэффициент трансформации был определен на заводе-изготовителе, то при монтаже целесообразно измерять те же напряжения. При отсутствии симметричного трехфазного напряжения коэффициент трансформации трехфазных трансформаторов, имеющих схему соединения обмоток Д/У или У/Д, можно определить при помощи фазных напряжений с поочередным закорачиванием фаз.
Для этого одну фазу обмотки (например, фазу А), соединенную в треугольник, закорачивают соединением двух соответствующих линейных зажимов данной обмотки. Затем при однофазном возбуждении определяют коэффициент трансформации оставшейся свободной пары фаз, который при данном методе должен быть равным 2 Kф для системы Д/У при питании со стороны звезды (рис. 2) или Kф/2 для схемы У/Д при питании со стороны треугольника, где Kф – фазный коэффициент трансформации (рис. 3).
Рис. 2. Определение коэффициентов трансформации трансформатора, соединенного по схеме Д/У, при несимметричном трехфазном напряжении: а – первое; б – второе и в – третье измерения
Аналогичным образом производят измерения при накоротко замкнутых фазах В и С. При испытании трехобмоточных трансформаторов коэффициент трансформации достаточно проверить для двух пар обмоток (см. рис. 1,б).
Если у трансформатора выведена нейтраль и доступны все начала и концы обмоток, то определение коэффициента трансформации можно производить для фазных напряжений. Проверку коэффициента трансформации по фазным напряжениям производят при однофазном или трехфазном возбуждении трансформатора.
Для трансформаторов с РПН разница коэффициента трансформации не должна превышать значения ступени регулирования. Коэффициент трансформации при приемосдаточных испытаниях определяется дважды – первый раз до монтажа, если паспортные данные отсутствуют или вызывают сомнения, и второй раз непосредственно перед вводом в эксплуатацию при снятии характеристики холостого хода.
Рис. 3. Определение коэффициентов трансформации трансформатора, соединенного по схеме У/Д, при несимметричном трехфазном напряжении: а – первое; б – второе и в – третье измерения
Рис. 4. Принципиальная схема универсального прибора типа УИКТ-3
Для ускорения измерения коэффициента трансформации применяется универсальный прибор типа УИКТ-3, которым можно измерить коэффициенты трансформации силовых и измерительных трансформаторов тока и напряжения без применения постороннего источника переменного тока. Одновременно с измерением коэффициента трансформации определяется полярность первичной и вторичной обмоток. Погрешность в измерении не должна превышать 0,5 % измеряемой величины.
Принцип работы прибора основан на сравнении напряжений, индуктируемых во вторичной и первичной обмотках трансформатора, с падением напряжения на известных сопротивлениях (рис. 4). Сравнение производится по мостовой схеме.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: