как узнать коллинеарны ли векторы

Онлайн калькулятор. Коллинеарность векторов.

Этот онлайн калькулятор позволит вам очень просто определить являются ли два вектора коллинеарными.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на проверку коллинеарности двух векторов и закрепить пройденый материал.

Калькулятор для вычисления коллинеарности векторов

Инструкция использования калькулятора для проверки коллинеарности векторов

Ввод даных в калькулятор коллинеарности векторов

В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора коллинеарности векторов

Теория. Коллинеарность векторов

как узнать коллинеарны ли векторы. vector colinearity. как узнать коллинеарны ли векторы фото. как узнать коллинеарны ли векторы-vector colinearity. картинка как узнать коллинеарны ли векторы. картинка vector colinearity.

Вектора коллинеарны если отношения их координаты равны между собой.

ax=ay=az
bxbybz

или

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Какие векторы называют коллинеарными

Все векторы имеют две характеристики: длину и направление.
Векторы, у которых равны обе характеристики, называют равными.
Векторы, у которых равны длины, но не совпадают направления, равными назвать не получится. Такие векторы равны только лишь по модулю.
Коллинеарные векторы – либо сонаправленные, либо направленные противоположно. При этом, длины векторов могут отличаться.
Коллинеарность — значит параллельность.

Условие коллинеарности векторов

\( k \) – это число, коэффициент.
Коэффициент \( k \) показывает, во сколько раз отличаются длины векторов.
Если отличаются длины векторов, то их соответственные координаты, также, отличаются в \( k \) раз.
Когда коэффициент \( k \) отрицателен, векторы направлены противоположно. А если положителен — то векторы сонаправлены.

Как применять условие коллинеарности векторов

Выясним, коллинеарны ли эти векторы:

Примечание:
Во всех трех уравнениях коэффициенты \( k \) должны совпадать.
Векторы не коллинеарные, если хотя бы один коэффициент \( k \) отличается от других значений \( k \) для записанной системы.

Коллинеарные векторы в физике

Примеры коллинеарных векторов в физических задачах:

1. Пусть тело движется прямолинейно и замедляется под действием силы трения. В таком случае вектор скорости этого тела и вектор ускорения будут коллинеарными векторами.

как узнать коллинеарны ли векторы. r1 460 280. как узнать коллинеарны ли векторы фото. как узнать коллинеарны ли векторы-r1 460 280. картинка как узнать коллинеарны ли векторы. картинка r1 460 280.

Рисунок 1 иллюстрирует коллинеарность векторов ускорения и скорости при прямолинейном равнозамедленном движении

2. При свободном падении тела векторы скорости и вектор ускорения свободного падения буду коллинеарными.

как узнать коллинеарны ли векторы. r2 460 290. как узнать коллинеарны ли векторы фото. как узнать коллинеарны ли векторы-r2 460 290. картинка как узнать коллинеарны ли векторы. картинка r2 460 290.

На рисунке 2 изображены коллинеарные векторы ускорения свободного падения и скорости падающего тела

Источник

Условие коллинеарности векторов

В статье ниже рассмотрим условия, при которых векторы считаются коллинеарными, а также разберем тему на конкретных примерах. И, прежде чем приступить к обсуждению, напомним некоторые определения.

Коллинеарные векторы – ненулевые векторы, лежащие на одной прямой или на параллельных прямых. Нулевой вектор считается коллинеарным любому другому.

Данное определение дает возможность убедиться в коллинеарности векторов в их геометрическом отображении, однако точность такого способа может иметь погрешности, например, в зависимости, от качества самого чертежа. Поэтому обратимся к алгебраическому толкованию: сформируем условие, которое будет явным признаком коллинеарности.

Координатная форма условия коллинеарности векторов

Мы можем также получить еще одно условие коллинеарности векторов, опираясь на понятие их произведения.

Два ненулевых вектора коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору.

Рассмотрим применение условия коллинеарности на конкретных примерах.

Решение

Ответ: заданные векторы коллинеарны.

Решение

Решение

Согласно выведенному выше условию, векторы коллинеарны, если

b → = λ · a → ⇔ b x = λ · a x b y = λ · a y ⇔ p = λ · 2 3 = λ · 7

Ответ: при p = 6 7 заданные векторы коллинеарны.

Также распространены задачи на нахождения вектора, коллинеарного заданному. Решаются они без затруднений, основываясь на условии коллинеарности: : достаточным будет взять произвольное действительное число λ и определить вектор, коллинеарный данному.

Решение

Решение

Источник

Коллинеарность векторов, условия коллинеарности векторов.

Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).

как узнать коллинеарны ли векторы. vector colinearity1. как узнать коллинеарны ли векторы фото. как узнать коллинеарны ли векторы-vector colinearity1. картинка как узнать коллинеарны ли векторы. картинка vector colinearity1.
рис. 1

Условия коллинеарности векторов

Два вектора будут коллинеарны при выполнении любого из этих условий:

Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

N.B. Условие 3 применимо только для трехмерных (пространственных) задач.

Доказательство третего условия коллинеарности

Пусть есть два коллинеарные вектора a = < ax ; ay ; az > и b = < nax ; nay ; naz >. Найдем их векторное произведение

Примеры задач на коллинеарность векторов

Примеры задач на коллинеарность векторов на плоскости

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:

ax=ay.
bxby
Вектора a и b коллинеарны т.к.1=2.
48
Вектора a и с не коллинеарны т.к.12.
59
Вектора с и b не коллинеарны т.к.59.
48

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

n =by=6= 2
ay3

Найдем значение n a :

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax=ay.
bxby

Решим это уравнение:

Ответ: вектора a и b коллинеарны при n = 6.

Примеры задач на коллинеарность векторов в пространстве

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:

ax=ay=az.
bxbybz

Вектора a и b коллинеарны т.к. 1 4 = 2 8 = 3 12

Вектора a и с не коллинеарны т.к. 1 5 = 2 10 ≠ 3 12

Вектора с и b не коллинеарны т.к. 5 4 = 10 8 ≠ 12 12

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

n =by=6= 2
ay3

Найдем значение n a :

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax=ay=az.
bxbybz

Из этого соотношения получим два уравнения:

3=2
9n
3=m
912

Решим эти уравнения:

n =2 · 9= 6
3
m =3 · 12= 4
9

Ответ: вектора a и b коллинеарны при n = 6 и m = 4.

Источник

Общие сведения

Вектором называют направленный отрезок, который имеет начало и конец. Обозначают его либо большими буквами, либо маленькими, например, АБ или a. Над буквой ставится знак вектора — стрелка. Любой отрезок характеризуется длиной, которую называют модулем. Если начало и конец прямой совпадают, то такой вектор носит название нулевой и обозначается в виде точки. При этом его модуль будет равняться нулю.

Для равенства векторов необходимо выполнение двух условий:

Равные вектора могут быть совмещены параллельным переносом, при этом начало и конец отрезков должны совпадать. Если ограниченные линии не являются равными, но лежат на параллельных прямых, то их называют коллинеарными, то есть, по определению коллинеарных векторов, их направление для определения признака не является важным.

Коллинеарность является одним из признаков сонаправленности, но для выполнения последнего они должны ещё и совпадать по направлению. Наглядным понятием, объясняющим сонаправленность, является прямое движение транспорта или пешехода. Например, если рассматривать две траектории движения как векторы АБ и СД, лежащие на плоскости, при этом их лучи лежат в одной полуплоскости и перпендикулярны её границам, то их можно назвать сонаправленными.

Поэтому параллельные отрезки будут направлены в одну сторону лишь тогда, когда их лучи находятся по одну сторону от прямой, соединяющей их начала. При этом если векторы коллинеарны, но не сонаправлены, то они будут являться противоположными.

С векторами можно выполнять любые простейшие арифметические операции. При сложении используют правила параллелограмма и треугольника. Пусть есть два отрезка, имеющие общее начало. Для того чтобы найти их сумму, необходимо фигуру достроить до параллелограмма. Диагональ этой фигуры и будет искомой величиной. Когда же конец одного отрезка является началом другого, то, соединив свободные точки, можно получить треугольник. Новая прямая и будет являться вектором суммы. Следует отметить, что эти правила равнозначны друг другу. Вычитание отрезков находится аналогично.

Вектор можно и умножить на число, то есть длина отрезка увеличивается на значение множителя. Если в произведении стоит отрицательное число, то характеристика меняет направление.

Критерии коллинеарности

Теорема критерия коллинеарности представляет собой утверждение, которое сообщает, что если есть два не ортогональных отрезка, одинаковых по длине, a и b, то вектор a может быть выражен через формулу a || b = a = y * b. При этом y обозначает любое произвольное число. Есть и обратное утверждение: если вектор b умножить на число и получится отрезок a, то тогда a и b будут коллинеарными.

Эти два правила тождественны и называются критериями коллинеарности. Для их доказательства нужно знать правило арифметических действий с параллельными и перпендикулярными векторами, а также понимать основной базис. Заключается он в том, что если имеются три отрезка a, b и c, при этом верной является следующая комбинация a || b и a || c, то справедливо утверждать, что b || c.

Для того чтобы доказать свойство a || b = a = y * b, нужно воспользоваться определением коллинеарности. Из него следует, что если a || b, то отрезки могут быть сонаправлены или противоположно направлены. Таким образом, необходимо проверить утверждение для двух случаев:

Если предположения окажутся верными, то можно будет сделать вывод о справедливости записи для других случаев. То есть к любым параллельным отрезкам можно применить равенство a = u * b. Этот критерий занимает важное место в геометрии наряду со свойствами перпендикулярности (ортогональности) прямых.

Сонаправленные вектора

Пусть a и b однонаправленные. Введём число y, равное отношению a на b. Так как длина вектора может быть только положительной, то и y = a /b > 0. Состояние вектора, когда он нулевой, является частным случаем и его можно не рассматривать, так как при этом получится равенство 0 = 0. Если длину b умножить на число, то получится новый вектор. Пусть это будет отрезок c, то есть с = y * b. Учитывая свойство коллинеарности, можно утверждать, что между c и b останется параллельность.

По условию известно, что a || b. Исходя из транзитивности отрезков, можно заключить, что и c || b. Теперь необходимо установить их направление. Изначально a и b направлены в одну сторону. Ведённый множитель больше нуля. Это значит, что после умножения направление вектора не изменится, то есть c будет иметь то же направление что и b. Тогда получается, что a || b и c || b. Отсюда следует, что a || с.

Длина вектора c равняется |c| = |u| * |b|. Вместо u можно подставить a / b. В итоге получится |a| * |b| / |b| = |a|. Таким образом, два условия выполняются, и можно утверждать, что с = a. Получается, что для двух любых однонаправленных векторов будет выполняться правило a = u * b.

Противоположные отрезки

Примеры решения задач

Теоретический материал нужно уметь применять в практических заданиях. В девятом классе на уроках геометрии учащимся предлагается решить несколько типов задач различной сложности. Научившись их решать, можно смело утверждать, что материал изучен. Вот некоторые из них:

Использование онлайн-калькулятора

Решение простых заданий из школьного курса обычно не вызывает сложностей. Но на практике приходится сталкиваться со сложными выражениями. Для их вычисления нужно проявить усидчивость и при этом быть предельно внимательным. Кроме этого, расчёт занимает довольно много времени, а любая, казалось бы, незначительная оплошность, приведёт к неправильному решению.

Поэтому условие коллинеарности векторов удобно проверять на так называемых онлайн-калькуляторах. Это обычно мощные сервисы, основная деятельность которых заключается в предоставлении услуг по автоматизации вычислений. Среди них попадаются и сайты, умеющие вычислять и вектора.

Для того чтобы выполнить на них математические операции, необходимо иметь доступ к интернету и установленный веб-обозреватель. Всё, что требуется от пользователя, это просто зайти на сайт и выбрать раздел, связанный с операциями над векторами. Затем в предложенную форму вести условие задания и запустить расчёт нажатием одной кнопки.

Из множества онлайн-расчётчиков, доступных в секторе рунета, можно выделить следующие:

Все указанные сервисы предоставляют доступ к услугам бесплатно и без регистрации. Воспользовавшись онлайн-калькуляторами, даже слабо подготовленный пользователь научится самостоятельно определять коллинеарность. Такие расчётчики будут полезны и учащимся, и инженерам.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *