как узнать модуль числа
Числа. Модуль числа.
Модуль положительного действительного числа a – это само это число. Число в модуле:
Модуль отрицательного действительного числа а – это противоположное ему число:
В общем случае запись модуля числа выглядит так:
Модулем числа 5 будет 5, т.к. точка В(5) отстоит от начала отсчета на 5 единичных отрезков. Записывают так: |5| = 5.
Расстояние точки М(-6) от начала отсчета О соответствует 6 единичным отрезкам. Число 6 есть модуль числа -6. Записывают так: |-6| = 6.
Модуль числа бывает только положительным. Если рассматривать положительное число и нуль, то модуль их будет равен им же, а если рассматривать отрицательное число – то модуль равен противоположному числу. У противоположных чисел одинаковые модули:
Модуль нуля равен нулю, т.к. точка с координатой нуль совпадает с началом отсчета 0, то есть удалена от нее на 0 единичных отрезков:
Просмотрев определение модуля числа можно сделать вывод, что модуль числа соответствует числу под знаком модуля, не учитывая знак. Это утверждение поясняет из-за чего модуль числа иногда употребляется под значением абсолютной величины числа. Таким образом, модуль числа и абсолютная величина числа – это тоже самое.
К примеру, модуль целого числа −7 можно записать как ; модуль рационального числа 4,125 записывается как , а модуль иррационального числа имеет запись вида .
Обобщённое понятие модуля числа
В данном уроке мы рассмотрим понятие модуля числа более подробно.
Что такое модуль?
Модуль — это расстояние от начала координат до какого-нибудь числа на координатной прямой. Поскольку расстояние не бывает отрицательным, то и модуль всегда неотрицателен. Так, модуль числа 3 равен 3, как и модуль числа −3 равен 3
Предстáвим, что на координатной прямой расстояние между целыми числами равно одному шагу. Теперь если отметить числа −3 и 3, то расстояние до них от начала координат будет одинаково равно трём шагам:
Модуль это не только расстояние от начала координат до какого-нибудь числа. Модуль это также расстояние между любыми двумя числами на координатной прямой. Такое расстояние выражается в виде разности между этими числами, заключенной под знак модуля:
Где x1 и x2 — числа на координатной прямой.
Например, отметим на координатной прямой числа 2 и 5.
Расстояние между числами 2 и 5 можно записать с помощью модуля. Для этого запишем разность из чисел 2 и 5 и заключим эту разность под знак модуля:
Видим, что расстояние от числа 2 до числа 5 равно трём шагам:
Если расстояние от 2 до 5 равно 3, то и расстояние от 5 до 2 тоже равно 3
То есть, если в выражении |5 − 2| поменять числа местами, то результат не изменится:
Тогда можно записать, что |2 − 5| = |5 − 2|. Вообще, справедливо следующее равенство:
Это равенство можно прочитать так: Расстояние от x1 до x2 равно расстоянию от x2 до x1.
Раскрытие модуля
Когда мы говорим, что |3|= 3 или |−3|= 3 мы выполняем действие называемое раскрытием модуля.
Правило раскрытия модуля выглядит так:
В зависимости от того что будет подставлено вместо x, выражение |x| будет равно x, если подставленное число больше или равно нулю. А если вместо x подставлено число меньшее нуля, то выражение |x| будет равно −x.
Второй случай на первый взгляд может показаться противоречивым, поскольку запись |x| = −x выглядит будто модуль стал равен отрицательному числу. Следует иметь ввиду, что когда x
Пример 2. Пусть x = 5. То есть мы рассматриваем модуль числа 5
В данном случае выполняется первое условие x ≥ 0, ведь 5 ≥ 0
Поэтому используем первую формулу. А именно | x | = x. Получаем | 5 | = 5.
Пример 3. Пусть x = √4 − 6. То есть мы рассматриваем модуль выражения √4 − 6,
Корень из числа 4 равен 2. Тогда модуль примет вид
x который был равен √4−6 теперь стал равен −4. В данном случае выполняется второе условие x |√4 − 6| = |2 − 6| = |−4| = −(−4) = 4
На практике обычно рассуждают так:
«Модуль раскрывается со знаком плюс, если подмодульное выражение больше или равно нулю; модуль раскрывается со знаком минус, если подмодульное выражение меньше нуля».
Примеры:
|2| = 2 — модуль раскрылся со знаком плюс, поскольку 2 ≥ 0
Пример 4. Пусть x = 0. То есть мы рассматриваем модуль нуля:
В данном случае выполняется условие x=0, ведь 0 = 0
Пример 5. Раскрыть модуль в выражении |x|+ 3
Если x ≥ 0, то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид x + 3.
Допустим, требуется найти значение выражения |x|+ 3 при x = 5. Поскольку 5 ≥ 0, то модуль, содержащийся в выражении |x|+ 3 раскрóется со знаком плюс и тогда решение примет вид:
Найдём значение выражения |x|+ 3 при x = −6. Поскольку −6 |x| + 3 = 3 − x = 3 − (−6) = 9
Пример 6. Раскрыть модуль в выражении x +|x + 3|
Найдём значение выражения x +|x + 3| при x = 4. Поскольку 4 ≥ −3, то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив 4 получим 11
Найдём значение выражения x +|x + 3| при x=−3.
Пример 3. Раскрыть модуль в выражении
Как и прежде используем правило раскрытия модуля:
В данном примере удобнее использовать подробную запись правила раскрытия модуля, где отдельно рассматривается случай при котором x = 0
Перепишем решение так:
Пример 4. Раскрыть модуль в выражении
Но надо учитывать, что при x = − 1 знаменатель выражения обращается в ноль. Поэтому второе условие x следует дополнить записью о том, какие значения может принимать x
Преобразование выражений с модулями
Модуль, входящий в выражение, можно рассматривать как полноценный множитель. Его можно сокращать и выносить за скобки. Если модуль входит в многочлен, то его можно сложить с подобным ему модулем.
Как и у обычного буквенного множителя, у модуля есть свой коэффициент. Например, коэффициентом модуля |x| является 1, а коэффициентом модуля −|x| является −1. Коэффициентом модуля 3|x+1| является 3, а коэффициентом модуля −3|x+1| является −3.
Пример 1. Упростить выражение |x| + 2|x| − 2x + 5y и раскрыть модуль в получившемся выражении.
Решение
Выражения|x| и 2|x| являются подобными членами. Слóжим их. Остальное оставим без изменений:
В итоге имеем следующее решение:
Пример 2. Раскрыть модуль в выражении: −|x|
Решение
Числа. Модуль числа.
Модуль положительного действительного числа a – это само это число. Число в модуле:
Модуль отрицательного действительного числа а – это противоположное ему число:
В общем случае запись модуля числа выглядит так:
Модулем числа 5 будет 5, т.к. точка В(5) отстоит от начала отсчета на 5 единичных отрезков. Записывают так: |5| = 5.
Расстояние точки М(-6) от начала отсчета О соответствует 6 единичным отрезкам. Число 6 есть модуль числа -6. Записывают так: |-6| = 6.
Модуль числа бывает только положительным. Если рассматривать положительное число и нуль, то модуль их будет равен им же, а если рассматривать отрицательное число – то модуль равен противоположному числу. У противоположных чисел одинаковые модули:
Модуль нуля равен нулю, т.к. точка с координатой нуль совпадает с началом отсчета 0, то есть удалена от нее на 0 единичных отрезков:
Просмотрев определение модуля числа можно сделать вывод, что модуль числа соответствует числу под знаком модуля, не учитывая знак. Это утверждение поясняет из-за чего модуль числа иногда употребляется под значением абсолютной величины числа. Таким образом, модуль числа и абсолютная величина числа – это тоже самое.
К примеру, модуль целого числа −7 можно записать как ; модуль рационального числа 4,125 записывается как , а модуль иррационального числа имеет запись вида .
Числа. Модуль числа.
Модуль положительного действительного числа a – это само это число. Число в модуле:
Модуль отрицательного действительного числа а – это противоположное ему число:
В общем случае запись модуля числа выглядит так:
Модулем числа 5 будет 5, т.к. точка В(5) отстоит от начала отсчета на 5 единичных отрезков. Записывают так: |5| = 5.
Расстояние точки М(-6) от начала отсчета О соответствует 6 единичным отрезкам. Число 6 есть модуль числа -6. Записывают так: |-6| = 6.
Модуль числа бывает только положительным. Если рассматривать положительное число и нуль, то модуль их будет равен им же, а если рассматривать отрицательное число – то модуль равен противоположному числу. У противоположных чисел одинаковые модули:
Модуль нуля равен нулю, т.к. точка с координатой нуль совпадает с началом отсчета 0, то есть удалена от нее на 0 единичных отрезков:
Просмотрев определение модуля числа можно сделать вывод, что модуль числа соответствует числу под знаком модуля, не учитывая знак. Это утверждение поясняет из-за чего модуль числа иногда употребляется под значением абсолютной величины числа. Таким образом, модуль числа и абсолютная величина числа – это тоже самое.
К примеру, модуль целого числа −7 можно записать как ; модуль рационального числа 4,125 записывается как , а модуль иррационального числа имеет запись вида .
Модуль числа (абсолютная величина числа), определения, примеры, свойства.
В этой статье мы детально разберем модуль числа. Мы дадим различные определения модуля числа, введем обозначения и приведем графические иллюстрации. При этом рассмотрим различные примеры нахождения модуля числа по определению. После этого мы перечислим и обоснуем основные свойства модуля. В конце статьи поговорим о том, как определяется и находится модуль комплексного числа.
Навигация по странице.
Модуль числа – определение, обозначение и примеры
Сначала введем обозначение модуля числа. Модуль числа a будем записывать как , то есть, слева и справа от числа будем ставить вертикальные черточки, образующие знак модуля. Приведем пару примеров. Например, модуль целого числа −7 можно записать как ; модуль рационального числа 4,125 записывается как , а модуль иррационального числа имеет запись вида .
Так мы определились с обозначением, теперь пришло время дать определение модуля числа. Чтобы хорошо понять определение модуля числа необходимо хорошо владеть материалом статьи положительные и отрицательные числа, а также статьи противоположные числа.
Следующее определение модуля относится к действительным числам, а следовательно, и к натуральным числам, и к целым, и к рациональным, и к иррациональным числам, как к составляющим частям множества действительных чисел. О модуле комплексного числа мы поговорим в последнем пункте этой статьи.
Приведем примеры нахождения модуля числа с помощью озвученного определения. Для примера найдем модули чисел 15 и . Начнем с нахождения . Так как число 15 – положительное, то его модуль по определению равен самому этому числу, то есть, . А чему равен модуль числа ? Так как — отрицательное число, то его модуль равен числу, противоположному числу , то есть, числу . Таким образом, .
В заключение этого пункта приведем один вывод, который очень удобно применять на практике при нахождении модуля числа. Из определения модуля числа следует, что модуль числа равен числу под знаком модуля без учета его знака, а из рассмотренных выше примеров это очень отчетливо видно. Озвученное утверждение объясняет, почему модуль числа называют еще абсолютной величиной числа. Так модуль числа и абсолютная величина числа – это одно и то же.
Модуль числа как расстояние
Геометрически модуль числа можно интерпретировать как расстояние. Приведем определение модуля числа через расстояние.
Модуль числа a – это расстояние от начала отсчета на координатной прямой до точки, соответствующей числу a.
Данное определение согласуется с определением модуля числа, данного в первом пункте. Поясним этот момент. Расстояние от начала отсчета до точки, которой соответствует положительное число, равно этому числу. Нулю соответствует начало отсчета, поэтому расстояние от начала отсчета до точки с координатой 0 равно нулю (не нужно откладывать ни одного единичного отрезка и ни одного отрезка, составляющего какую-нибудь долю единичного отрезка, чтобы от точки O попасть в точку с координатой 0 ). Расстояние от начала отсчета до точки с отрицательной координатой равно числу, противоположному координате данной точки, так как равно расстоянию от начала координат до точки, координатой которой является противоположное число.
Озвученное определение модуля числа является частным случаем определения модуля разности двух чисел.
Определение модуля числа через арифметический квадратный корень
Иногда встречается определение модуля через арифметический квадратный корень.
Для примера вычислим модули чисел −30 и на основании данного определения. Имеем . Аналогично вычисляем модуль двух третьих: .
Свойства модуля
Модуль комплексного числа
Модулем комплексного числа z=x+i·y называется арифметический квадратный корень из суммы квадратов действительной и мнимой части данного комплексного числа.
Модуль комплексного числа z обозначается как , тогда озвученное определение модуля комплексного числа может быть записано в виде .
Данное определения позволяет вычислить модуль любого комплексного числа в алгебраической форме записи. Для примера вычислим модуль комплексного числа . В этом примере действительная часть комплексного числа равна , а мнимая – минус четырем. Тогда по определению модуля комплексного числа имеем .
Геометрическую интерпретацию модуля комплексного числа можно дать через расстояние, по аналогии с геометрической интерпретацией модуля действительного числа.
Модуль комплексного числа z – это расстояние от начала комплексной плоскости до точки, соответствующей числу z в этой плоскости.
По теореме Пифагора расстояние от точки O до точки с координатами (x, y) находится как , поэтому, , где . Следовательно, последнее определение модуля комплексного числа согласуется с первым.
Можно также заметить, что произведение комплексного числа на комплексно сопряженное число дает сумму квадратов действительной и мнимой части. Действительно, . Полученное равенство позволяет дать еще одно определение модуля комплексного числа.
Модуль комплексного числа z – это арифметический квадратный корень из произведения этого числа и числа, комплексно сопряженного с ним, то есть, .
В заключение отметим, что все свойства модуля, сформулированные в соответствующем пункте, справедливы и для комплексных чисел.