как узнать на что делится число без остатка
Признаки делимости чисел
Что такое «признак делимости»
Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.
Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.
Однозначные, двузначные и трехзначные числа
Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.
Трехзначные числа — числа, в составе которых три знака (три цифры).
Чётные и нечётные числа
Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!
Признаки делимости чисел
Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.
Признак делимости на 3. Сумма цифр числа должна делиться на 3.
Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.
Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.
Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.
Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.
Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.
Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.
Признаки делимости чисел
В данной публикации мы рассмотрим признаки делимости на числа от 2 до 11, сопроводив их примерами для лучшего понимания.
Признак делимости – это алгоритм, используя который можно сравнительно быстро определить, является ли рассматриваемое число кратным заранее заданному (т.е. делится ли на него без остатка).
Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра является четной, т.е. также делится на два.
Примеры:
Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма всех его цифр, также, делится на три.
Примеры:
Признак делимости на 4
Двузначное число
Число делится на 4 тогда и только тогда, когда сумма удвоенной цифры в разряде его десятков и цифры в разряде единиц, также, делится на четыре.
Число разрядов больше 2
Число кратно 4, когда две его последние цифры образуют число, делящееся на четыре.
Примечание:
Число делится на 4 без остатка, если:
Признак делимости на 5
Число делится на 5 тогда и только тогда, когда его последняя цифра – это 0 или 5.
Примеры:
Признак делимости на 6
Число делится на 6 тогда и только тогда, когда он одновременно кратно и двум, и трем (см. признаки выше).
Примеры:
Признак делимости на 7
Число делится на 7 тогда и только тогда, когда сумма утроенного числа его десятков и цифры в разряде единиц, также, делится на семь.
Признак делимости на 8
Трехзначное число
Число делится на 8 тогда и только тогда, когда сумма цифры в разряде единиц, удвоенной цифры в разряде десятков и учетверенной в разряде сотен делится на восемь.
Число разрядов больше 3
Число делится на 8, когда три последние цифры образуют число, делящееся на 8.
Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма всех его цифр, также, делится на девять.
Примеры:
Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.
Примеры:
Признак делимости на 11
Число делится на 11 тогда и только тогда, когда модуль разности сумм четных и нечетных разрядов равен нулю или делится на одиннадцать.
Примеры:
Как узнать, делится ли число без остатка на 7 и 8?
Когда я учился в школе и решал задачки по математике, очень часто хотелось узнать, делится одно число на другое (предполагается, что делитель меньше 10) или нет без остатка. Обычно при решении таких примеров учителя запрещали пользоваться калькулятором, а вычисления в «столбик» были относительно длительны. Я нередко ошибался и получал несуразные результаты. А знание того, что число заведомо разделится без остатка, было бы здесь совсем не лишним.
Потом, не помню в каком классе, нам рассказали о некоторых признаках делимости. Давайте вместе вспомним их. (Предупреждение: я не являюсь ни учителем математики, ни аспирантом математических наук, поэтому буду излагать не научно правильно, а как умею. Учителям математики просьба — не придираться по этому поводу).
Число без остатка делится на 2, если делится на 2 его последняя цифра. То есть если последняя цифра — четная. Объясняется это просто. Число 10 — четное. Сколько десятков к четной цифре ни добавляй, оно все равно останется четным.
По-другому с тройкой. Число без остатка делится на 3, если делится на 3 сумма всех его цифр. Например, 327. Сумма его цифр: 3+2+7=12. 12 делится на 3 без остатка, значит, и число 327 делится на 3 без остатка. (327: 3 = 109).
Далее. Число без остатка делится на 4, если делится на 4 число из двух последних его цифр. Число 100 делится без остатка на 4, и, следовательно, сколько сотен ни добавляй, оно все равно будет делиться на 4. Если двухзначное число выходит за таблицу умножения, то от него следует отнять 40 и узнать, делится ли полученное число на 4.
Например, 56. Вы, допустим, затрудняетесь сказать, делится ли оно на 4. Тогда от его нужно отнять 40. Получается 16, а оно делится на 4. Следовательно, и 56 делится на 4. А также 156, 356, 756, 1556, 3756 — все они будут делиться на 4. Значение имеют лишь две последние цифры числа.
Очень простой признак делимости на 5. Число без остатка делится на 5, если оно заканчивается цифрой 5, либо цифрой 0. Здесь, я думаю, комментарии не требуются.
Про признак делимости на 6 в школе не рассказывают. Однако любой ученик с более-менее живым умом легко до него додумается. Поскольку 6 = 2×3, то для того, чтобы число делилось на 6, оно должно одновременно делиться и на 2, и на 3. А признаки делимости на эти числа нам уже известны. Число без остатка делится на 6, если оно четное и если его сумма цифр делится на 3.
Важно! Я в школьные годы очень часто делал ошибки, думая, что если сумма цифр числа делится на 6, то и само число будет делиться на 6. Это не так. Например, 123. Сумма его чисел равна 6. Но оно не делится на 6, так как является нечетным (123: 6 = 20,5).
Ну и еще в школе рассказывают про признак делимости на 9. Он полностью аналогичен признаку делимости на 3. Число без остатка делится на 9, если делится на 9 сумма всех его цифр.
Как видим, в этом списке нет признаков делимости на 7 и 8. Недавно я, пораскинув мозгами на досуге, сумел найти эти признаки.
Начнем с числа 8 — это проще. Число 100 не делится без остатка на 8 (100: 8 = 12,5). И, следовательно, такой финт, как с четверкой, не пройдет. Например, 332. Число из двух последних цифр делится на 8, но 332: 8 = 41,5. Однако на 8 делится без остатка число 1000 (1000: 8 = 125). Таким образом, если трехзначное число, например 256, делится на 8, то к нему можно прибавить тысячу (которая тоже делится на 8), и оно по-прежнему будет делиться на 8.
256: 8 = 32.
1256: 8 = 157.
Далее: 2256, 5256, 15256, 27256 — все они будут делиться на 8. Таким образом, число без остатка делится на 8, если делится на 8 число из трех последних его цифр.
Здесь, наверно, у многих возникнет ехидная усмешка. Мол, спасибо, ты нам сильно помог. Как же мы узнаем, делится ли на 8 трехзначное число? Не волнуйтесь, есть способ.
Поскольку 8 = 2×4, то чтобы число делилось на 8, требуется, чтобы оно делилось и на 4. Это условие необходимое, но не достаточное. Далее можно поступить по аналогии с тысячей. Мы уже выяснили, что 100 не делится на 8 без остатка. Однако число 200 делится — 200: 8 = 25. Таким образом, если в трехзначном числе число из двух последних цифр делится на 8, а первая цифра четная, то и само трехзначное число разделится на 8. Если же первая цифра нечетная, то число из двух последних цифр должно делиться на 4, но не делиться на 8.
Подытожим все сказанное. Число без остатка делится на 8, если делится на 8 трехзначное число из трех последних цифр числа. Трехзначное число без остатка делится на 8, если:
1) его первая цифра четная, а число из двух последних цифр делится на 8;
2) его первая цифра нечетная, а число из двух последних цифр делится на 4, но не делится на 8.
Звучит это, возможно, грозно, однако ничего сложного здесь нет. Потренируйтесь, и вы быстро научитесь.
Значит, чтобы узнать, что число делится на 7, нужно от трехзначного числа, образованного тремя последними цифрами исходного, отнять число тысяч. Если полученное число делится на 7, то и исходное будет делиться на 7. Например, 3752. Здесь трехзначное число, образованное последними цифрами — 752, число тысяч — 3. Вычитаем: 752 — 3 = 749. Таким образом, задача свелась к отысканию делимости трехзначного числа 749.
Здесь у многих опять возникнет ехидная усмешка. Мол, как же узнать, делится ли это число на 7? Сразу скажу, способ есть. Подробно расписывать не буду, предлагаю читателям самим додуматься. Скажу лишь основную предпосылку: на 7 без остатка делится число 105 (105: 7 = 15).
Чтобы узнать, делится ли трехзначное число на 7, нужно число сотен умножить на 5 и полученное число отнять от двухзначного числа, образованного двумя последними цифрами. Так в числе 749 число сотен — 7; 7×5 = 35; 49 — 35 = 14, а 14 делится на семь. Следовательно, и 749, и 3752 делятся на 7 без остатка.
749: 7 = 107.
3752: 7 = 536.
Сформулируем признак делимости на 7. Число больше трехзначного без остатка делится на 7, если делится на 7 трехзначное число, равное разности между числом, образованным тремя последними цифрами исходного и количеством тысяч в числе. Трехзначное число без остатка делится на 7, если делится на 7 число, равное разности между числом, образованным двумя последними цифрами исходного и количеством сотен в числе, умноженным на 5.
Формулировка довольно сложная, поэтому разберем пример. Возьмем число 17 969. На первом этапе надо от трехзначного числа, образованного тремя последними цифрами (969), отнять количество тысяч в числе (17). Получим 969 — 17 = 952. Таким образом, наша задача свелась к отысканию делимости на 7 этого числа. В этом состоит второй этап. Для этого нужно от числа, образованного двумя последними цифрами (52), отнять число сотен (9), умноженное на 5 (9×5 = 45); 52 — 45 =7. Семь без остатка делится на 7, значит, делятся на 7 и 952 (952: 7 = 136), и 17 969 (17 969: 7 = 2 567).
На этом у меня все. Если есть вопросы, задавайте.
Признаки делимости на 2, 3, 4, 5, 9,10, 11, 25
Признаки делимости — это такие признаки, благодаря которым мы можем определить без расчетов, делится ли число на другое нацело (без остатка) или нет, т.е. является ли число (делимое) кратно другому (делителю).
Рассмотрим конкретные признаки делимости на числа 2, 3, 4, 5, 9,10, 11, 25 и приведем примеры. Для наглядности выбран вид изложения материала — табличный. Внизу статьи вы сможете скачать наглядные материалы для лучшего усвоения данной темы, а также шпаргалку по данной теме.
Таблица
7395610 : 2 = 3697805
8356489634 : 2 = 4178244817
192 : 3 = 64 (1 + 9 + 2 = 12; 12 делится на 3),
768 : 3 = 256 (7 + 6 + 8 = 21; 21 делится на 3)
6324 : 4 = 1581 (24 делится на 4)
648616 : 4 = 162154 (16 делится на 4)
3144 : 6 = 524 (3144 делится на 2, так как заканчивается на 4 – признак делимости на 2; 3 + 1 + 4 + 4 = 12; 12 делится на 3) Соответственно 3144 делится на 6.
Число делится на 7, если разность между делимым без последней цифры и удвоенным числом единиц, делится на 7
28 7 : 7 = 41 (28 – 7×2=28-14=14; 14 делится на7)
1432 : 8 = 179 (т.к. 432 делится на 8; 432 : 8 = 54).
603 : 9 = 67 ( 6 + 0 + 3 = 9, 9 делится на 9). Поменяем местами цифры в делимом и проверим снова кратность числа 96
630 : 9 = 70 (6 + 3 + 0 = 9),
5832 : 9 = 648 (5 + 8 + 3 + 2 = 18; 18 делится на 9)
2 695 : 11 = 245 (2 + 9 = 6 + 5 = 11)
1 232 : 11 = 112 (1 + 3 = 2 + 2 = 4)
3 641 : 11 = 331 (3 + 4 = 6 + 1 = 7)
Признаки делимости на составное число
Если нам нужно узнать делится ли число на какое-нибудь составное, то нам нужно разложить делитель на два множителя, признаки делимости которых известны. Посмотрите делится ли исходное число (делимое) на каждый из этих множителей. Если ответ положительный, то число делится на составное.
Шпаргалка
Скачать в PNG или PDF (рекомендуется для печати)
И шпаргалка маленького размера ( 10 на 6 см) в виде таблицы
Скачать и распечатать в ворде
Задача
Пользуясь признаками делимости, из данных чисел 1368,2121,2178,4356,5635,7221,8484. Выберете числа кратные
Ответ: Числа, которые делятся на 5: 5635
Числа с признаками делимости 2: 1268, 2178, 4356, 8484
Числа, кратные 9: 1368, 2178, 4356
Числа, кратные 3: 1368, 2121, 2178, 4356, 7221, 8484
деление без остатка
Деление без остатка. Сколько способов есть разделить число без отставка. Признаки strong. И деление без остатка на калькуляторе.
Делим без остатка
Признаки деления числа без остатка.
Если пример не очень сложный, то можно определить, делится ли число без остатка или нет! Зная признаки делимости чисел.
Чтобы попытаться разобраться. давайте разберем несколько примеров. делится ли данное число на второе число без остатка.
Делится ли число 126 на 2 без остатка?
Если вы знаете признак делимости на 2, то вы точно можете заявить, что число 126 делится на 2 без остатка.
И далее нам остается разделить 126 на 2, либо на калькуляторе, либо столбиком
Делится ли число 126 на 3 без остатка?
Далее мы можем проверить, делится ли число 126 на 3 без остатка. поступаем аналогично, что и в выше описанном примере!
И из этого мы узнаем, что наше число 126 длится и на 3 без остатка.
Делится ли число 126 на 4 без остатка?
Если мы проверим, делится ли число на 4 без остатка, по выше приведенному алгоритму, то мы получим, что данное число не делится без остатка :
А если числа большие!?
Как определить, что они делятся без остатка.
Определить делится ли число без остатка(любое число)
Для этого есть самый простой и эффективный метод, с помощью которого можно за пару секунд узнать делится ли данное число без остатка или делится с остатком!?
Нам опять нужен пример. я думаю, что вы точно не знаете, делится ли эти числа без остатка! Ну, и я не знаю.
Поэтому открываем калькулятор и делим данные числа
И получаем результат :
Из которого мы можем извлечь вывод, что два числа 6461889 и 987 делятся без остатка.