как узнать насколько увеличивается изображение при использовании микроскопа
Биология
Как определить увеличение, которое даёт световой микроскоп?
Чтобы узнать, насколько увеличивается изображение при использовании микроскопа, надо умножить число, указанное на окуляре, на число, указанное на используемом объективе.
Ещё по теме
В чём принципиальное отличие растений от других живых существ?
Почему млекопитающие смогли широко расселиться на земном шаре?
Какие увеличительные приборы вы знаете?
Что такое ризоиды? Почему из нельзя называть корнями?
Каких животных относят к подцарству Одноклеточные? Назовите их общие признаки.
Какой вид человека первым появился на Земле и когда?
Зачем маляры перед побелкой смачивают потолок медным купоросом?
Как роль в экосистеме влияет на строение организма?
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
О сайте
На нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам.
Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте.
calcsbox.com
На сайте используется технология LaTeX.
Поэтому для корректного отображения формул и выражений
пожалуйста дождитесь полной загрузки страницы.
© 2021 Все калькуляторы online
Копирование материалов запрещено
Увеличение и разрешающая способность светового микроскопа
Микроскоп – сложная оптическая система, позволяющая увеличивать изображение исследуемого объекта с десятки и сотни раз. У всех них есть принцип действия, а также характеристики, от которых зависит сфера работы каждого увеличительного прибора.
Увеличение микроскопа
Работа со световым микроскопом проводится для получения изображения под увеличением. Различают несколько его типов: объектив, окуляр, а также диапазон увеличения. Также у современного оборудования есть и цифровое.
Во сколько раз увеличивает световой микроскоп?
В обычном устройстве установлены две линзы, которые являются короткофокусными. Это окуляр и объектив.
Окуляр – это часть увеличительного прибора, устанавливаемая в окулярный узел, куда непосредственно смотрит исследователь. Его кратность в среднем составляет 10-20, величина этого параметра зависит от марки и вида прибора. Эти элементы могут быть съемные, а могут и быть установлены стационарно.
Как определить увеличение светового микроскопа?
Увеличение изображения, обеспечиваемое световым микроскопом, соответствуют произведению усиления окуляра и объектива. То есть изображение, которое мы видим при увеличении объекта, является совместной работой одного и второго элемента.
Объективы же – это элементы, которые также имеют в совеем составе увеличительные линзы. Данная конструкция закреплена на револьверном блоке, на котором может быть несколько объективов.
Например, если окуляр имеет значение кратности 10, а объектив – 20, то общее увеличение составляет 200 крат. Чтобы добиться необходимого размера, стоит поставить лишь подходящие оптические элементы. Однако, есть и ограничения в этом показателе.
Во сколько раз он увеличивает изображение максимально?
Даже самые современнее и мощные микроскопы не смогут увеличить объект свыше 2000 крат, так как изображение будет просто нечетким, и его визуализация будет невозможна.
Цифровое увеличение же зависит от возможности камеры, а также параметров экрана, на который будет выводиться изображение.
Поле зрения микроскопа
Поле зрения является параметром, характеризующий предельно максимальный диаметром области, который может быть визуализирован человеческим глазом при исследовании через окуляр. Зависит поле зрения от:
Данную величину можно рассчитать в миллиметрах, если исследовать миллиметровую шкалу линейки через микроскоп, при этом поле зрения не зависит от кратности увеличения окуляра.
Диаметр выходного зрачка микроскопа
Для того, чтобы определить такой показатель, как диаметр выходного зрачка, необходимо применение динаметра Рамсдена. Также для измерения такой величины может использоваться диоптрийная трубка со стеклянной шкалой. В фокальной плоскости анной лупы расположена сетка, цена деления которой составляет 0,1 миллиметр.
Разрешающая способность
Важными параметрами для увеличительного оборудования является и разрешающая способность светового микроскопа.
Смыслом определения разрешающая способность светового микроскопа, является возможность оптической системы четко различать две рядом расположенные точки. Это минимальное расстояние, расположенное между двумя точками, различающимися отдельно друг от друга.
Есть пределы разрешения светового микроскопа.
Максимальная разрешающая способность равна 0,25 мкм, это предел разрешающей способности светового микроскопа.
Если не достигнут предел разрешения светового микроскопа, то ее можно увеличить. Это возможно путем увеличения апертуры объектива или уменьшением длины волны света.
Полезное увеличение
Это показатель, который определяет увеличение, способное увидеть глазом исследователя, равное разрешающей способности прибора.
Это означает, что разрешающая способность человеческого глаза равна такому же показателю увелиивающего устройства. Для того, чтобы определить максимальную разрешающую способность объектива, необходимо подобрать от 500 до 1000 крат.
Минимальное полезное увеличение – это числовая апертура, помноженная на 500. Соответственно, максимальное увеличение – это числовая апертура, умноженная на 1000. Использование значений, менее минимальных, не даст возможности использовать разрешающую способность в полном объеме, а работа на больших параметрах не дать более четкого изображения изучаемого объекта.
Какие органоиды можно увидеть в световой микроскоп?
При помощи него можно довольно детально изучить структуру и строение клетки и ее органелл. В стандартный световой микроскоп можно увидеть рибосомы, комплекс Гольджи, который был открыт именно при помощи данного оборудования Камилло Гольджи, ядро, вакуоли, митохондрии, хлоропласт. Также прекрасно визуализируется клеточная стенка.
При выборе такой аппаратуры очень важно понимать ее сферу применения, так как для школьной лаборатории вполне достаточными параметрами обладает обычный световой микроскоп, а для научно-исследовательской, медицинской лаборатории, его мощности будет недостаточно для достижения всех поставленных целей. Среди такой техники можно выделить оптические, электронные, рентгеновские микроскопы, сканирующие оптические микроскопы ближнего поля и другие.
Что можно увидеть в оптический и цифровой микроскопы и как ими пользоваться
Содержание
Содержание
При проведении научных и любительских исследований невозможно обойтись без микроскопа. Он не только приблизит исследователя к новым открытиям, но и поможет рассмотреть удивительный мир, открывающийся в окружающих нас вещах. Что именно можно увидеть в микроскоп, как им пользоваться и какой лучше подойдет — в этом материале.
Что такое микроскоп
Прообраз первого микроскопа появился еще в 16 веке и с тех пор устройство прошло длинный путь своего становления и развития. Микроскопом называют прибор, предназначенный для увеличения мелких или практически не видимых человеческим глазом предметов и объектов. Процессы такого изучения называют микроскопией, которая подразделяется на категории в зависимости от вида микроскопа.
Где же можно использовать данное устройство:
На вопрос «Кто изобрел микроскоп?» до сих пор нет однозначного ответа, так как многие ученые и любители работали над похожими системами. Тем не менее часто выделяют Иоанна Липперсгея, Захария Янсена и, конечно же, Галилео Галилея.
Многие помнят или представляют микроскоп, как прибор с одним или двумя окулярами, которые при увеличении позволяют исследователю рассмотреть предмет в многократном увеличении. Это и есть классический прямой оптический микроскоп. Современная микроскопия использует множество типов приборов: электронные, инвертированные, лазерные, люминесцентные, стереоскопические и другие.
Так, например, люминесцентные подсвечивают изучаемый объект и позволяют изучать его как бы освещенным изнутри собственным светом за счет специальной лампы и системы светофильтров. А электронные, в отличие от оптических, используют вместо света пучки электронов. В общем для каждой отрасли науки и даже изучаемого объекта нужен определенный прибор. Мы же рассмотрим наиболее популярные и доступные рядовым пользователям модели.
Основные элементы микроскопа
И так, микроскопы отличаются друг от друга видами и целевым назначением. Соответственно, и устроены они по-разному. Существует две системы — оптическая и механическая. Первая включает в себя все элементы без которых микроскоп не будет микроскопом.
Окуляр
Глядя в глазной окуляр исследователь и будет изучать какой-либо объект. Окуляр дает некоторое фиксированное увеличение (10x, 20x, 25x и т.д.). Современные окуляры имеют несколько линз, встроенных в металлический корпус (тубус). В зависимости от количества окуляров микроскопы подразделяются на монокулярные, бинокулярные и тринокулярные. Бинокулярные создают стереокартинку, более удобны чем молекулярные, но в отличие от последних требуют привыкания и дополнительных настроек при использовании двух окуляров. Если используется цифровой микроскоп, то в нем окуляр как таковой отсутствует — его роль выполняет камера.
Объектив
Важнейшая и самая сложная часть прибора, позволяющая в купе с окуляром детально рассмотреть любой объект исследования. Чаще всего состоит из металлической трубки с несколькими линзами, дающими кратное увеличение. Объектив смотрит непосредственно на предмет изучения, точнее сказать — на предметный столик. Полученное с помощью объектива изображение мы и видим в окуляр.
В любительских и профессиональных устройствах может быть несколько объективов (не менее 3-х) встроенных в устройство или насадку револьверного типа. Пользователь просто проворачивает насадку и смотрит в нужный объектив. Чем больше объективов разной кратности, тем лучше для пользователя. Кратность указывается на корпусе объектива.
У каждого окуляра и объектива есть свое увеличение, которое вместе образует общее увеличение микроскопа. Чтобы высчитать его? нужно перемножить кратность увеличения окуляров и объективов. Так, например, если кратность окуляра составляет 10х, а объектива 40х, то общее увеличение будет составлять 400х. В некоторых приборах общее увеличение может составлять до 1200х. При таком увеличении можно рассматривать клетки растений и животных, строение насекомых, пыльцу растений и т.п.
Подсветка
При изучении объект, когда он расположен на подставке, необходимо подсвечивать снизу пучком света. Свет можно направить как простым зеркалом, так и более сложными устройствами, например, электроосветителями. Также подсветка может быть комбинированная для просмотра прозрачных и непрозрачных объектов. На нижних фотографиях указана комбинированная подсветка. На правом фото также виден небольшой винт регулировки подсветки.
Микроскопы используют при реставрациях образцов мировой культуры. Например, для восстановления терракотовой армии или полотен эпохи Возрождения.
А сейчас перейдем к механической системе микроскопа. Вот некоторые элементы, которые она включает в себя.
Подставка
Это основание микроскопа, отвечающее за его устойчивость. Если сюда прибавить еще и штатив, то вместе получится корпус микроскопа. На него крепятся все остальные части прибора. Чтобы фокусировать изображение, на корпусе обычно располагаются два винта, один из которых приближает или отдаляет объектив от объекта (грубая регулировка), а второй помогает произвести более тонкую фокусировку на предмете (тонкая регулировка).
Предметный столик
На него помещаются объекты для изучения. В центре столика есть небольшое круглое отверстие, через которое на предмет попадает пучок света. Снабжен зажимами. В некоторых моделях цифровых микроскопов, предметный столик отсутствует.
Дополнительные аксессуары
Помимо самого микроскопа потребуются и дополнительные инструменты, без которых работа будет невозможна или затруднительна. Главным здесь будет предметное стекло, на которое помещается предмет, подлежащий изучению. При необходимости он сверху накрывается покрывным стеклом. Также пригодятся скальпель, пипетка и пинцет. Пипетка будет полезна при наборе жидких образцов, пинцетом можно передвигать объекты изучения, а скальпелем отрезать небольшие частицы от предметов. Собирать и хранить какие-либо образцы желательно в специальных контейнерах, хотя можно обойтись и подручными средствами.
Принцип работы микроскопа
Кратко коснемся принца работы устройства и разберем его на примере оптического микроскопа. Для того, чтобы что-то рассмотреть в окуляры, нужна подсветка. В зависимости от вида прибора это может быть естественное или искусственное освещение, направление которого регулируется зеркалом. Кстати говоря, сейчас это уже устаревшая система. Все чаще используют свет, исходящий от встроенной в основание микроскопа лампы, которая питается от сети или батарейки. Подсветка лампы чаще всего регулируемая.
Поток света (естественного или от лампы) проходит через отверстие в предметном столике, пронизывает объект изучения насквозь и попадает на линзы объектива, а затем — окуляра, которые обеспечивают увеличение. Ну а далее в дело вступает опытный взгляд исследователя.
Как пользоваться оптическим микроскопом
Перед началом работы нужно подготовить рабочее место, очистить его от мусора и пыли. Желательно вымыть руки или использовать перчатки. Если есть пробелы в знаниях или сомнения, относящиеся к работе микроскопа, то обязательно нужно изучить инструкцию. В целом же работать с микроскопом не так сложно, как кажется на первый взгляд.
Изучаемый предмет помещается на предметный столик. Так можно изучать продукты питания, бумагу, насекомых, волосы и другие мелкие предметы. Несколько сложнее с жидкостью или в том случае, когда исследуемые объекты требуют предварительной подготовки. Например, тонкого среза или смеси в виде кашицы. На них нужно капнуть воды или специальной жидкости и сверху осторожно накрыть покровным стеклом. Также можно использовать готовые наборы микропрепаратов, в которые входит предметное стекло с уже нанесенным на него объектом исследования. Это может быть кошачья шерсть, голова мухи, срез дождевого червя, костная ткань, минералы и многое другое.
Далее нужно осуществить фокусировку. Винтом грубой регулировки следует приближать и отдалять предмет, пока не получится четкое изображение. После этого винтом (или колесиком) тонкой настройки добиваемся максимальной резкости картинки. Начинать фокусировать нужно с минимального значения, постепенно переключаясь на более высокое увеличение. Например, если прибор имеет два объектива значением 2х и 4х, то начинать фокусировку нужно с 2х, а затем, вращая револьверную насадку увеличивать значение.
Начав сразу же с максимального увеличения, пользователь рискует увидеть лишь малую часть объекта или же вообще ничего не увидеть. Если же прибор имеет только один объектив, то увеличение у него будет постоянным. Важно помнить, что винтом грубой фокусировки объектив приближается к предметному столику, поэтому есть большой риск сломать стекло, повредить сам объектив и даже получить порезы. Искать фокус следует не к стеклу, а от стекла. Стоит заметить, что на некоторых объективах, в первую очередь стократных, устанавливается специальная оправа, которая пружинит при встрече со стеклом. Однако, ее цель состоит не в защите линзы, а в создании более плотного контакта стекла с объективом.
Как пользоваться цифровым микроскопом
Цифровой микроскоп работает по-другому. У него отсутствует окуляр и сам он напоминает цифровую камеру, только с более многократным увеличением. Такие микроскопы можно встретить в нескольких вариантах, с различными характеристиками, назначением и соответственно ценами. Возьмем для примера стандартный настольный микроскоп, который больше относится к любительским. Подключив его через USB порт к компьютеру, пользователь также устанавливает специальное программное обеспечение, с помощью которого возможно рассмотреть изображение. После подключения, под объектив прибора размешается объект изучения, после чего исследователь сможет рассмотреть полученное изображение на мониторе компьютера. Считывается изображение посредством цифровой камеры.
Исследования через микроскоп — это не только полезно, но еще и увлекательно. Ученые используют профессиональные, мощные и дорогие устройства. Любителям же подойдут цифровые или бинокулярные оптические модели, с помощью которых можно изучать окружающий мир: насекомых, растения, продукты питания, камни, веточки деревьев и многое другое.
6.2. Микроскоп
Микроскоп предназначен для наблюдения мелких объектов с большим увеличением и с большей разрешающей способностью, чем дает лупа. Оптическая система микроскопа состоит из двух частей: объектива и окуляра. Объектив микроскопа образует действительное увеличенное обратное изображение предмета в передней фокальной плоскости окуляра. Окуляр действует как лупа и образует мнимое изображение на расстоянии наилучшего видения (рис. 6.4). По отношению ко всему микроскопу рассматриваемый предмет располагается в передней фокальной плоскости.
Рис. 6.4. Оптическая схема микроскопа.
6.2.1. Увеличение микроскопа
Действие микрообъектива характеризуют его линейным увеличением:
, | (6.5) |
где – фокусное расстояние микрообъектива, – расстояние между задним фокусом объектива и передним фокусом окуляра, называемое оптическим интервалом или оптической длиной тубуса.
Изображение, создаваемое объективом микроскопа в передней фокальной плоскости окуляра рассматривается через окуляр, который действует как лупа с видимым увеличением:
. | (6.6) |
Общее увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра:
| (6.7) |
Если известно фокусное расстояние всего микроскопа, то его видимое увеличение можно определить так же, как и у лупы:
. | (6.8) |
Как правило, увеличение современных объективов микроскопов стандартизованное и составляет ряд чисел: 10, 20, 40, 60, 90, 100 крат. Увеличения окуляров тоже имеют вполне определенные значения, например 10, 20, 30 крат. Во всех современных микроскопах имеется комплект объективов и окуляров, которые специально рассчитываются и изготавливаются так, что подходят друг к другу, поэтому их можно комбинировать для получения разных увеличений.
6.2.2. Поле зрения микроскопа
Поле зрения микроскопа зависит от углового поля окуляра , в пределах которого получается изображение достаточно хорошего качества:
. | (6.9) |
При данном угловом поле окуляра линейное поле микроскопа в пространстве предметов тем меньше, чем больше его видимое увеличение.
6.2.3. Диаметр выходного зрачка микроскопа
Диаметр выходного зрачка микроскопа вычисляется следующим образом:
. | (6.10) |
где – передняя апертура микроскопа.
Диаметр выходного зрачка микроскопа обычно немного меньше диаметра зрачка глаза (0.5 – 1 мм).
При наблюдении в микроскоп зрачок глаза нужно совмещать с выходным зрачком микроскопа.
6.2.4. Разрешающая способность микроскопа
Одной из важнейших характеристик микроскопа является его разрешающая способность. Согласно дифракционной теории Аббе, линейный предел разрешения микроскопа, то есть минимальное расстояние между точками предмета, которые изображаются как раздельные, зависит от длины волны и числовой апертуры микроскопа:
. | (6.11) |
Предельно достижимую разрешающую способность оптического микроскопа можно сосчитать, исходя из выражения для апертуры микроскопа (). Если учесть, что максимально возможное значение синуса угла – единичное (), то для средней длины волны можно вычислить разрешающую способность микроскопа: .
Из выражения (6.11) следует, что повысить разрешающую способность микроскопа можно двумя способами: либо увеличивая апертуру объектива, либо уменьшая длину волны света, освещающего препарат.
Иммерсия
Для того чтобы увеличить апертуру объектива, пространство между рассматриваемым предметом и объективом заполняется так называемой иммерсионной жидкостью – прозрачным веществом с показателем преломления больше единицы. В качестве такой жидкости используют воду (), кедровое масло (), раствор глицерина и другие вещества. Апертуры иммерсионных объективов большого увеличения достигают величины , тогда предельно достижимая разрешающая способность иммерсионного оптического микроскопа составит .
Применение ультрафиолетовых лучей
Для увеличения разрешающей способности микроскопа вторым способом применяются ультрафиолетовые лучи, длина волны которых меньше, чем у видимых лучей. При этом должна быть использована специальная оптика, прозрачная для ультрафиолетового света. Поскольку человеческий глаз не воспринимает ультрафиолетовое излучение, необходимо либо прибегнуть к средствам, преобразующим невидимое ультрафиолетовое изображение в видимое, либо фотографировать изображение в ультрафиолетовых лучах. При длине волны разрешающая способность микроскопа составит .
Кроме повышения разрешающей способности, у метода наблюдения в ультрафиолетовом свете есть и другие преимущества. Обычно живые объекты прозрачны в видимой области спектра, и поэтому перед наблюдением их предварительно окрашивают. Но некоторые объекты (нуклеиновые кислоты, белки) имеют избирательное поглощение в ультрафиолетовой области спектра, благодаря чему они могут быть «видимы» в ультрафиолетовом свете без окрашивания.
6.2.5. Полезное увеличение микроскопа
Глаз наблюдателя сможет воспринимать две точки как раздельные, если угловое расстояние между ними будет не меньше углового предела разрешения глаза. Для того чтобы глаз наблюдателя мог полностью использовать разрешающую способность микроскопа, необходимо иметь соответствующее видимое увеличение.
Полезное увеличение – это видимое увеличение, при котором глаз наблюдателя будет полностью использовать разрешающую способность микроскопа, то есть разрешающая способность микроскопа будет такая же, как и разрешающая способность глаза.
Если две точки в передней фокальной плоскости микроскопа расположены друг от друга на расстоянии , то угловое расстояние между изображениями этих точек . Из выражений (6.11) и (6.8) можно вывести видимое увеличение микроскопа:
. | (6.12) |
Поскольку обычно диаметр выходного зрачка микроскопа около 0.5 – 1 мм, угловой предел разрешения глаза 2´ – 4´. Если взять среднюю длину волны в видимой области спектра (0.5 мкм), то для полезного увеличения микроскопа можно вывести зависимость:
. | (6.13) |
Микроскоп с видимым увеличением меньше 500А не позволяет различать глазом все тонкости структуры предмета, которые изображаются как раздельные данным объективом (). Использование видимого увеличения больше 1000А нецелесообразно, так как разрешающая способность объектива не позволяет полностью использовать разрешающую способность глаза ().