как узнать натяжение нити
Определение силы натяжения нити
Сила натяжения нити — формулировка
Силой натяжения называют силу, приложенную к концам объекта и создающую внутри него упругую деформацию.
Длина тела, к которому приложена сила, обычно многократно больше, чем его толщина. Примерами таких объектов являются веревка, канат, трос, леска, проволока. Сила натяжения визуально проявляется в следующих примерах:
Как определить силу, формулы
Натяжение проявляется по-разному. Поэтому сила натяжения может рассчитываться определенным образом, в зависимости от окружающих условий.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
С неподвижно закрепленным верхним концом
Простейшим примером проявления силы натяжения является нить с закрепленным на ней грузом. Верхний конец такого подвеса фиксируется неподвижно. В этом случае сила натяжения будет соответствовать силе тяжести, которая действует на тело. Формула для расчета:
где m – это масса тела, а g представляет собой ускорение свободного падения.
Если нить под углом
В случае, когда груз расположен под определенным углом, характер силы натяжения несколько изменяется. Примером такой системы выступает маятник.
где а равен углу отклонения.
Формула с учетом ускорения и массы
В ситуации, при которой на груз оказывается сила натяжения, приводящая его в движение вверх, следует использовать такую формулу для ее расчета:
Сила натяжения во вращающейся системе
Описание
Такое явление можно наблюдать, когда система из нити и тела вращается во время раскручивания подвеса вокруг своей оси с закрепленным на одном его конце объектом: центрифуга, маятник, качели. Сила натяжения, возникающая внутри подвеса, характеризуется центробежной силой и в условиях вращения в вертикальной плоскости циклически претерпевает изменения. То есть можно наблюдать зависимость силы от угла отклонения от вертикали:
Формула расчета
Рассчитать силу натяжения в условиях вращающейся системы можно так:
Обозначение, единица измерения
Существуют определенные стандарты для написания формулы силы натяжения. Как и другие физические силы, натяжение обозначается F. В качестве единицы измерения используют Ньютон (H)
Примеры решения задач
Задание 1
На невесомую нерастяжимую нить действует сила натяжения Т=4400Н. Необходимо определить максимальное ускорение подъема груза, масса которого равна m=400 кг, подвешенного на этой нити. При этом нить должна сохранить целостность.
Решение
Представив все силы, оказывающие действие на тело, необходимо составить формулу второго закона Ньютона. Тело является материальной точкой, а силы приложены к центру его массы.
\(\bar
Проекция уравнения будет иметь следующий вид:
Данное выражение позволяет рассчитать ускорение:
Так как все величины, изложенные в задании, соответствуют единицам СИ, можно провести корректные вычисления
Задание 2
На иллюстрации изображен шар, который обладает массой m=0.1 кг. Будучи зафиксирован на нити, шарик совершает движение по окружности в горизонтальной плоскости. Длина подвеса составляет l=5 м, а радиус окружности – R=3 м. Требуется вычислить модуль силы натяжения нити.
Решение
Необходимо воспользоваться вторым законом Ньютона и записать его для сил, которые действуют на шар. Центростремительное ускорение при его вращении по окружности будет записано следующим образом:
Проекции данной формулы по осям определяются следующим образом:
X: \(T sin α = ma = mω2R\)
Таким образом, из уравнения Y получаем расчет модуля силы натяжения нити:
Анализ рисунка позволяет вывести следующее уравнение:
\(\sin \alpha = \frac
Если cos α заменить уравнением для расчета модуля силы натяжения нити, то получим следующую формулу:
Значения основных величин, выраженные в СИ, можно подставить в конечную формулу для расчета силы натяжения нити:
Сила натяжения нити
Понятие силы натяжения нити
Сила натяжения нити является реакцией подвеса (нити), на действие со стороны тела на подвес. Сила натяжения нити всегда имеет направление вдоль нити.
Очень часто при решении задач указывают, что нить является невесомой (массой нити в сравнении с массой груза можно пренебречь). Если нить невесома и нерастяжима, то такую нить рассматривают как проводник силы.
Если следует учитывать растяжение нити, при этом нагрузки малы, а нить упругая, то при вычислении силы натяжения используют закон Гука:
Единицей измерения силы натяжения нити в Международной системе единиц (СИ) (как и для любой другой силы) является ньютон:
Примеры задач на силу натяжения нити
Решение. Рассмотрим силы, которые приложены к первому грузу, запишем второй закон Ньютона для этого тела:
Проектируя на оси X и Y уравнение (1.1) получаем:
\[\left\< \begin
Рассмотрим силы, действующие на второй груз, запишем второй закон Ньютона для этих сил:
В проекциях на оси X и Y получаем систему уравнений:
\[\left\< \begin
Так как нить считаем невесомой, то имеем:
Из уравнения (1.5) выразим ускорение и подставим его в (1.2)получим величину силы натяжения нити:
Задание. К нерастяжимой нити подвешен массивный шарик. Шарик подняли так, что нить приняла горизонтальное положение, затем шарик отпустили. Какова сила натяжения нити в момент, когда шарик проходит положение равновесия? Какой угол составляет нить с вертикалью, если сила натяжения равна силе тяжести, действующая на шарик?
Решение. Сделаем рисунок.
1) Силы, действующие на шарик в момент прохождения положения равновесия (положение А на рис.2): сила тяжести и сила натяжения нити. Для них запишем второй закон Ньютона:
Запишем проекцию выражения (2.1) на ось Y:
где шарик движется с центростремительным ускорением, равным:
Выразим силу натяжения нити из (2.2), подставим найденное ускорение, учитывая (2.4):
Ось Y направим по нити, ось X перпендикулярно оси Y (рис.3).
Запишем проекцию уравнения (2.1) на новую ось Y:
Выразим силу натяжения нити:
Учитывая (2.3), получим:
Подставим результат (2.9) в формулу (2.7), получили:
Приравниваем по условию силу натяжения нити к силе тяжести, выражаем величину угла:
Как рассчитать силу натяжения в физике
В физике, сила натяжения — это сила, действующая на веревку, шнур, кабель или похожий объект или группу объектов. Все, что натянуто, подвешено, поддерживается или качается на веревке, шнуре, кабеле и так далее, является объектом силы натяжения. Подобно всем силам, натяжение может ускорять объекты или становиться причиной их деформации. Умение рассчитывать силу натяжения является важным навыком не только для студентов физического факультета, но и для инженеров, архитекторов; те, кто строит устойчивые дома, должны знать, выдержит ли определенная веревка или кабель силу натяжения от веса объекта так, чтобы они не проседали и не разрушались. Приступайте к чтению статьи, чтобы научиться рассчитывать силу натяжения в некоторых физических системах.
Определение силы натяжения на одной нити
Определите силы на каждом из концов нити. Сила натяжения данной нити, веревки является результатом сил, натягивающих веревку с каждого конца. Напоминаем, сила = масса × ускорение. Предполагая, что веревка натянута туго, любое изменение ускорения или массы объекта, подвешенного на веревке, приведет к изменению силы натяжения в самой веревке. Не забывайте о постоянном ускорении силы тяжести — даже если система находится в покое, ее составляющие являются объектами действия силы тяжести. Мы можем предположить, что сила натяжения данной веревки это T = (m × g) + (m × a), где «g» — это ускорение силы тяжести любого из объектов, поддерживаемых веревкой, и «а» — это любое другое ускорение, действующее на объекты.
Учитывайте ускорение. Сила тяжести — не единственная сила, что может влиять на силу натяжения веревки — такое же действие производит любая сила, приложенная к объекту на веревке с ускорением. Если, к примеру, подвешенный на веревке или кабеле объект ускоряется под действием силы, то сила ускорения (масса × ускорение) добавляется к силе натяжения, образованной весом этого объекта.
Учитывайте угловое ускорение. Объект на веревке, вращающийся вокруг точки, которая считается центром (как маятник), оказывает натяжение на веревку посредством центробежной силы. Центробежная сила — дополнительная сила натяжения, которую вызывает веревка, «толкая» ее внутрь так, чтобы груз продолжал двигаться по дуге, а не по прямой. Чем быстрее движется объект, тем больше центробежная сила. Центробежная сила (Fc) равна m × v2/r где «m»- это масса, «v» — это скорость, и «r» — радиус окружности, по которой движется груз.
Учтите, что сила натяжения благодаря силе тяжести меняется по мере прохождения груза по дуге. Как было отмечено выше, направление и величина центробежной силы меняются по мере того, как качается объект. В любом случае, хотя сила тяжести и остается постоянной, результирующая сила натяжения в результате тяжести тоже меняется. Когда качающийся объект находится не в нижней точке дуги (точке равновесия), сила тяжести тянет его вниз, но сила натяжения тянет его вверх под углом. По этой причине сила натяжения должна противодействовать части силы тяжести, а не всей ее полноте.
Рассчитайте трение. Любой объект, который тянется веревкой и испытывает силу «торможения» от трения другого объекта (или жидкости), передает это воздействие натяжению в веревке. Сила трения между двумя объектами рассчитывается также, как и в любой другой ситуации — по следующему уравнению: Сила трения (обычно пишется как Fr) = (mu)N, где mu — это коэффициент силы трения между объектами и N — обычная сила взаимодействия между объектами, или та сила, с которой они давят друг на друга. Отметим, что трение покоя — это трение, которое возникает в результате попытки привести объект, находящийся в покое, в движение — отличается от трения движения — трения, возникающего в результате попытки заставить движущийся объект продолжать движение.
Расчет силы натяжения на нескольких нитях
Поднимите вертикальные параллельные грузы с помощью блока. Блоки — это простые механизмы, состоящие из подвесного диска, что позволяет менять направление силы натяжения веревки. В простой конфигурации блока, веревка или кабель идет от подвешенного груза вверх к блоку, затем вниз к другому грузу, создавая тем самым два участка веревки или кабеля. В любом случае натяжение в каждом из участков будет одинаковым, даже если оба конца будут натягиваться силами разных величин. Для системы двух масс, подвешенных вертикально в блоке, сила натяжения равна 2g(m1)(m2)/(m2+m1), где «g» — ускорение силы тяжести, «m1» — масса первого объекта, «m2»- масса второго объекта.
Подвесьте грузы, используя блоки с не параллельными вертикальными нитями. Блоки зачастую используются для того, чтобы направлять силу натяжения в направлении, отличном от направления вниз или вверх. Если, к примеру, груз подвешен вертикально к одному концу веревки, а другой конец держит груз в диагональной плоскости, то непараллельная система блоков принимает форму треугольника с углами в точках с первых грузом, вторым и самим блоком. В этом случае натяжение в веревке зависит как от силы тяжести, так и от составляющей силы натяжения, которая параллельна к диагональной части веревки.
Используйте несколько нитей, чтобы подвесить объект. В заключение, давайте представим, что объект подвешен на «Y-образной» системе веревок — две веревки закреплены на потолке и встречаются в центральной точке, из которой идет третья веревка с грузом. Сила натяжения третьей веревки очевидна — простое натяжение в результате действия силы тяжести или m(g). Натяжения на двух остальных веревках различаются и должны составлять в сумме силу, равную силе тяжести вверх в вертикальном положении и равны нулю в обоих горизонтальных направлениях, если предположить, что система находится в состоянии покоя. Натяжение в веревке зависит от массы подвешенных грузов и от угла, на который отклоняется от потолка каждая из веревок.
Об этой статье
Эту страницу просматривали 244 428 раз.
Была ли эта статья полезной?
Определение силы натяжения нити
Сила натяжения нити — формулировка
Силой натяжения называют силу, приложенную к концам объекта и создающую внутри него упругую деформацию.
Длина тела, к которому приложена сила, обычно многократно больше, чем его толщина. Примерами таких объектов являются веревка, канат, трос, леска, проволока. Сила натяжения визуально проявляется в следующих примерах:
Как определить силу, формулы
Натяжение проявляется по-разному. Поэтому сила натяжения может рассчитываться определенным образом, в зависимости от окружающих условий.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
С неподвижно закрепленным верхним концом
Простейшим примером проявления силы натяжения является нить с закрепленным на ней грузом. Верхний конец такого подвеса фиксируется неподвижно. В этом случае сила натяжения будет соответствовать силе тяжести, которая действует на тело. Формула для расчета:
где m — это масса тела, а g представляет собой ускорение свободного падения.
Если нить под углом
В случае, когда груз расположен под определенным углом, характер силы натяжения несколько изменяется. Примером такой системы выступает маятник.
где а равен углу отклонения.
Формула с учетом ускорения и массы
В ситуации, при которой на груз оказывается сила натяжения, приводящая его в движение вверх, следует использовать такую формулу для ее расчета:
Сила натяжения во вращающейся системе
Описание
Такое явление можно наблюдать, когда система из нити и тела вращается во время раскручивания подвеса вокруг своей оси с закрепленным на одном его конце объектом: центрифуга, маятник, качели. Сила натяжения, возникающая внутри подвеса, характеризуется центробежной силой и в условиях вращения в вертикальной плоскости циклически претерпевает изменения. То есть можно наблюдать зависимость силы от угла отклонения от вертикали:
Формула расчета
Рассчитать силу натяжения в условиях вращающейся системы можно так:
Обозначение, единица измерения
Существуют определенные стандарты для написания формулы силы натяжения. Как и другие физические силы, натяжение обозначается F. В качестве единицы измерения используют Ньютон (H)
Примеры решения задач
На невесомую нерастяжимую нить действует сила натяжения Т=4400Н. Необходимо определить максимальное ускорение подъема груза, масса которого равна m=400 кг, подвешенного на этой нити. При этом нить должна сохранить целостность.
Представив все силы, оказывающие действие на тело, необходимо составить формулу второго закона Ньютона. Тело является материальной точкой, а силы приложены к центру его массы.
(bar
Проекция уравнения будет иметь следующий вид:
Данное выражение позволяет рассчитать ускорение:
Так как все величины, изложенные в задании, соответствуют единицам СИ, можно провести корректные вычисления
На иллюстрации изображен шар, который обладает массой m=0.1 кг. Будучи зафиксирован на нити, шарик совершает движение по окружности в горизонтальной плоскости. Длина подвеса составляет l=5 м, а радиус окружности — R=3 м. Требуется вычислить модуль силы натяжения нити.
Необходимо воспользоваться вторым законом Ньютона и записать его для сил, которые действуют на шар. Центростремительное ускорение при его вращении по окружности будет записано следующим образом:
Проекции данной формулы по осям определяются следующим образом:
X: (T sin α = ma = mω2R)
Таким образом, из уравнения Y получаем расчет модуля силы натяжения нити:
Анализ рисунка позволяет вывести следующее уравнение:
(sin alpha = frac
Если cos α заменить уравнением для расчета модуля силы натяжения нити, то получим следующую формулу:
Значения основных величин, выраженные в СИ, можно подставить в конечную формулу для расчета силы натяжения нити:
Сила натяжения нити
Понятие силы натяжения нити
Сила натяжения нити является реакцией подвеса (нити), на действие со стороны тела на подвес. Сила натяжения нити всегда имеет направление вдоль нити.
Очень часто при решении задач указывают, что нить является невесомой (массой нити в сравнении с массой груза можно пренебречь). Если нить невесома и нерастяжима, то такую нить рассматривают как проводник силы.
Если следует учитывать растяжение нити, при этом нагрузки малы, а нить упругая, то при вычислении силы натяжения используют закон Гука:
Единицей измерения силы натяжения нити в Международной системе единиц (СИ) (как и для любой другой силы) является ньютон:
Примеры задач на силу натяжения нити
Решение. Рассмотрим силы, которые приложены к первому грузу, запишем второй закон Ньютона для этого тела:
Проектируя на оси X и Y уравнение (1.1) получаем:
[left< begin
Рассмотрим силы, действующие на второй груз, запишем второй закон Ньютона для этих сил:
В проекциях на оси X и Y получаем систему уравнений:
[left< begin
Так как нить считаем невесомой, то имеем:
Из уравнения (1.5) выразим ускорение и подставим его в (1.2)получим величину силы натяжения нити:
Задание. К нерастяжимой нити подвешен массивный шарик. Шарик подняли так, что нить приняла горизонтальное положение, затем шарик отпустили. Какова сила натяжения нити в момент, когда шарик проходит положение равновесия? Какой угол составляет нить с вертикалью, если сила натяжения равна силе тяжести, действующая на шарик?
Решение. Сделаем рисунок.
1) Силы, действующие на шарик в момент прохождения положения равновесия (положение А на рис.2): сила тяжести и сила натяжения нити. Для них запишем второй закон Ньютона:
Запишем проекцию выражения (2.1) на ось Y:
где шарик движется с центростремительным ускорением, равным:
[mgl=mfrac
Выразим силу натяжения нити из (2.2), подставим найденное ускорение, учитывая (2.4):
Ось Y направим по нити, ось X перпендикулярно оси Y (рис.3).
Запишем проекцию уравнения (2.1) на новую ось Y:
Выразим силу натяжения нити:
Учитывая (2.3), получим:
Подставим результат (2.9) в формулу (2.7), получили:
Приравниваем по условию силу натяжения нити к силе тяжести, выражаем величину угла:
Читать дальше: сообщающиеся сосуды.
Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »
Сила натяжения нити и применение формулы в бытовых ситуациях
Силой натяжения называют ту, что действует на объект, сравнимый с проволокой, шнуром, кабелем, ниткой и так далее. Это могут быть несколько объектов сразу, в таком случае сила натяжения будет действовать на них и необязательно равномерно. Объектом натяжения называют любой предмет, подвешенный на все вышеперечисленное. Но кому это нужно знать? Несмотря на специфичность информации, она может пригодиться даже в бытовых ситуациях.
Например, при ремонте дома или квартиры. Ну и, конечно же, всем людям, чья профессия связана с расчетами:
Натяжения нити и подобных объектов
А зачем им это знать и какая от этого практическая польза? В случае с инженерами и конструкторами знания о мощи натяжения позволят создавать устойчивые конструкции. Это означает, что сооружения, техника и прочие конструкции смогут дольше сохранять свою целостность и прочность. Условно, эти расчеты и знания можно разделить на 5 основных пунктов, чтобы в полной мере понять, о чем идет речь.
1 Этап
Задача: определить силу натяжения на каждом из концов нити. Эту ситуацию можно рассматривать как результат воздействия сил на каждый конец нити. Она равняется массе, помноженной на ускорение свободного падения. Предположим, что нить натянута туго. Тогда любые воздействия на объект приведет к изменению натяжения (в самой нити). Но даже при отсутствии активных действий, по умолчанию будет действовать сила притяжения. Итак, подставим формулу: Т=м*g+м*а, где g – ускорение падения (в данном случае подвешенного объекта), а – любое иное ускорение, действующее извне.
Есть множество сторонних факторов, влияющих на расчеты – вес нити, ее кривизна и так далее. Для простых расчетов это мы не будем пока что учитывать. Иными словами – пусть нить будет идеальна с математической точки зрения и «без изъянов».
Возьмем «живой» пример. На балке подвешена прочная нить с грузом в 2 кг. При этом отсутствует ветер, покачивания и прочие факторы, так или иначе влияющие на наши расчеты. Тогда мощь натяжения равна силе тяжести. В формуле это можно выразить так: Fн=Fт=м*g, в нашем случае это 9,8*2=19,6 ньютона.
2 Этап
Заключается он в вопросе об ускорении. К уже имеющейся ситуации давайте добавим условие. Суть его в том, чтобы на нить действовало еще и ускорение. Возьмем пример попроще. Представим, что нашу балку теперь поднимают вверх со скоростью 3 м/с. Тогда, к натяжению прибавится ускорение груза и формула примет следующий вид: Fн=Fт+уск*м. Ориентируясь на прошлые расчеты получаем: Fн=19,6+3*2=25,6 ньютона.
3 Этап
Тут уже посложнее, так как речь идет об угловом вращении. Следует понимать, что при вращении объекта вертикально, сила, воздействующая на нить, будет намного больше в нижней точке. Но давайте возьмем пример с несколько меньшей амплитудой качания (по типу маятника). В этом случае для расчетов нужна формула: Fц=м* v²/r. Тут искомое значение обозначает дополнительную мощь натяжения, v – скорость вращения подвешенного груза, а r – радиус окружности, по которому вращается груз. Последнее значение фактически равняется длине нити, пускай она составляет 1,7 метра.
Итак, подставляя значения, находим центробежные данные: Fц=2*9/1,7=10,59 ньютона. А теперь, чтобы узнать полную силу натяжения нити, надо к имеющимся данным о состоянии покоя прибавить центробежную силу: 19,6+10,59=30,19 ньютона.
4 Этап
Следует учитывать меняющуюся силу натяжения по мере прохождения груза через дугу. Иными словами – независимо от постоянной величины притяжения, центробежная (результирующая) сила меняется по мере того, как качается подвешенный груз.
Чтобы лучше понять этот аспект, достаточно представить себе привязанный груз к веревке, которую можно свободно вращать вокруг балки, к которой она закреплена (как качели). Если веревку раскачать достаточно сильно, то в момент нахождения в верхнем положении сила притяжения будет действовать в «обратную» сторону относительно силы натяжения веревки. Иными словами – груз станет «легче», из-за чего ослабнет и натяжение на веревку.
Предположим, что маятник отклоняется на угол, равный двадцати градусам от вертикали и движется со скоростью 1,7 м/с. Сила притяжения (Fп) при этих параметрах будет равна 19,6*cos(20)=19,6*0,94=18,424 Н; центробежная сила (F ц=mv²/r)=2*1,7²/1,7=3,4 Н; ну а полное натяжение (Fпн) будет равняться Fп+ Fц=3,4+18,424=21,824 Н.
5 Этап
Его суть заключается в силе трения между грузом и другим объектом, что в совокупности косвенно влияет на натяжение веревки. Иначе говоря – сила трения способствует увеличению силы натяжения. Это хорошо видно на примере перемещения объектов по шершавой и гладкой поверхностях. В первом случае трение будет большим, поэтому и сдвигать предмет становится тяжелее.
Общее натяжение в данном случае вычисляется по формуле: Fн=Fтр+Fу, где Fтр – трение, а Fу – ускорение. Fтр=мкР, где мк – трение между объектами, а Р – сила взаимодействия между ними.
Чтобы лучше понять данный аспект, рассмотрим задачу. Допустим, у нас груз 2 кг и коэффициент трения равен 0,7 с ускорением движения 4м/с постоянной скорости. Теперь задействуем все формулы и получаем:
Теперь вы знаете больше и можете сами находить и рассчитывать нужные значения. Конечно, для более точных расчетов нужно учитывать больше факторов, но для сдачи курсовой и реферата этих данных вполне достаточно.
Видео
Это видео поможет вам лучше разобраться в данной теме и запомнить ее.