как узнать непрерывность функции
Определение непрерывности функции в точке
Непрерывность в точке
Определение непрерывности
Определение непрерывности функции в точке
Функция f ( x ) называется непрерывной в точке x 0 , если она определена на некоторой окрестности U ( x 0) этой точки, включая саму точку, и если предел при x стремящемся к x 0 существует и равен значению функции в x 0 :
.
Здесь подразумевается, что x 0 – это конечная точка. Значение функции в ней может быть только конечным числом.
Если привлечь сюда определение конечного предела функции в конечной точке, то можно дать развернутую формулировку определения непрерывности функции. Поскольку имеется два равносильных определения предела функции (по Коши и по Гейне), то можно дать, как минимум, еще два эквивалентных определения непрерывности.
Запишем эти определения с помощью логических символов существования и всеобщности.
По Гейне:
.
По Коши:
.
Определение отсутствия непрерывности
Непрерывность на концах отрезка
Определение непрерывности справа (слева)
Функция f ( x ) называется непрерывной справа (слева) в точке x 0 , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x 0 равен значению функции в x 0 :
.
Примеры
Пример 1
Используем определение по Гейне
Используем определение по Коши
Пример 2
Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Непрерывность функций – теоремы и свойства
Определение непрерывности функции
Определение непрерывности справа (слева)
Функция f ( x ) называется непрерывной справа (слева) в точке x 0 , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x 0 равен значению функции в x 0 :
.
Свойства непрерывных в точке функций
Свойство непрерывности слева и справа
Функция непрерывна в точке тогда и только тогда, когда она непрерывна в справа и слева.
Доказательства свойств приводятся на странице «Свойства непрерывных в точке функций».
Непрерывность сложной функции
Предел сложной функции
Точки разрыва
Определение точки разрыва 1-го рода
Точка называется точкой разрыва первого рода, если является точкой разрыва и существуют конечные односторонние пределы слева и справа :
.
Определение скачка функции
Скачком Δ функции в точке называется разность пределов справа и слева
.
Таким образом, точка устранимого разрыва – это точка разрыва 1-го рода, в которой скачек функции равен нулю.
Определение точки разрыва 2-го рода
Точка называется точкой разрыва второго рода, если она не является точкой разрыва 1-го рода. То есть если не существует, хотя бы одного одностороннего предела, или хотя бы один односторонний предел в точке равен бесконечности.
Свойства функций, непрерывных на отрезке
Вторая теорема Вейерштрасса о максимуме и минимуме непрерывной функции
Непрерывная на отрезке функция достигает на нем своих верхней и нижней граней или, что тоже самое, достигает на отрезке своего максимума и минимума.
Обратные функции
Аналогичным образом можно сформулировать теорему о существовании и непрерывности обратной функции на полуинтервале.
Свойства и непрерывность элементарных функций
Элементарные функции и обратные к ним непрерывны на своей области определения. Далее мы приводим формулировки соответствующих теорем и даем ссылки на их доказательства.
Показательная функция
Логарифм
Экспонента и натуральный логарифм
Степенная функция
Тригонометрические функции
Теорема о непрерывности тригонометрических функций
Тригонометрические функции: синус ( sin x ), косинус ( cos x ), тангенс ( tg x ) и котангенс ( ctg x ), непрерывны на своих областях определения.
Теорема о непрерывности обратных тригонометрических функций
Обратные тригонометрические функции: арксинус ( arcsin x ), арккосинус ( arccos x ), арктангенс ( arctg x ) и арккотангенс ( arcctg x ), непрерывны на своих областях определения.
Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Непрерывность функции и точки разрыва
п.1. Приращение аргумента и приращение функции
Пусть \(y=3x-1\) \(x_0=1,\ x=1,1 \) |
п.2. Непрерывность функции в точке и на промежутке
На «языке ε-δ» определение непрерывности будет следующим:
ε-δ определение непрерывности похоже на ε-δ определение предела функции, с той разницей, что модуль \(|x-x_0|\) может быть равен 0 для непрерывной функции, т.е. сама точка \(x_0\) входит в δ-окрестность.
Все три представленных определения непрерывности функции в точке эквивалентны.
Существуют и другие эквивалентные определения. Мы дадим ещё одно из них дальше, в этом же параграфе.
п.3. Непрерывность функции на промежутке
Промежуток – это интервал, отрезок, луч и т.п. (см. §16 справочника для 8 класса).
График непрерывной функции – это непрерывная линия.
Кроме непрерывности, эта линия еще и «плавная», без «заломов».
При наличии заломов функция называется кусочно-непрерывной.
Непрерывная функция |
Кусочно-непрерывная функция |
п.4. Односторонние пределы
Рассмотрим гиперболу \(y=\frac<1>
Теперь рассмотрим параболу \(y=x^2-2\)
Областью определения параболы является вся числовая прямая \(x\in\mathbb
Это еще одно определение непрерывности, которым удобно пользоваться на практике.
п.5. Классификация точек разрыва
Точки разрыва | 1-го рода Односторонние пределы существуют и конечны | Устранимые Односторонние пределы равны между собой, но не равны \(f(x_0)\) |
Неустранимые (скачок) Односторонние пределы не равны между собой | ||
2-го рода Хотя бы один из односторонних пределов бесконечен или не существует |
п.6. Точки разрыва первого рода
\(y= \begin Односторонние пределы: \begin |
п.7. Точки разрыва второго рода
В точках разрыва 2-го рода хотя бы один из односторонних пределов бесконечен или не существует.
\(y=e^\frac1x, x_0=0\) |
Точка \(x_0=0\) – точка разрыва второго рода.
На практике, при моделировании реальных процессов, разрывы 2-го рода в функциональных зависимостях встречаются довольно часто. Их положено заботливо анализировать и тщательно обходить, выбирая рабочие участки характеристических кривых, – чтобы «система не пошла в разнос».
п.8. Алгоритм исследования функции на непрерывность
На входе: функция \(y=f(x)\)
Шаг 1. Найти ОДЗ функции, определить точки и промежутки, не принадлежащие ОДЗ.
Шаг 2. Составить множество точек, в которое входят точки и границы промежутков, не принадлежащие ОДЗ, а также – для кусочно-непрерывных функций – точки сшивания. Полученное множество состоит из точек, подозрительных на разрыв.
Шаг 3. Исследовать каждую из точек, подозрительных на разрыв, с помощью односторонних пределов. Если разрыв обнаружен, определить тип разрыва.
На выходе: список точек разрыва и тип разрыва для каждой точки.
п.9. Примеры
Непрерывность функции
Понятие непрерывности функции.
Функция \(f(x)\), определенная в некоторой окрестности точки \(a\), называется непрерывной в точке \(a\), если
$$
\displaystyle \lim_
$$
Таким образом, функция \(f\) непрерывна в точке \(a\), если выполнены следующие условия:
Определение непрерывности функции \(f(x)\) в точке \(a\), выраженное условием \eqref
Следует обратить внимание на то, что в определении непрерывности функции, в отличие от определения предела, рассматривается полная, а не проколотая окрестность точки \(a\), и пределом функции является значение этой функции в точке \(a\).
Назовем разность \(x-a\) приращением аргумента и обозначим \(\Delta x\), а разность \(f(x)-f(a)\) — приращением функции, соответствующим данному приращению аргумента \(\Delta x\), и обозначим \(\Delta y\). Таким образом,
$$
\Delta x=x-a,\;\Delta y=f(x)-f(a)=f(a+\Delta x)-f(a).\nonumber
$$
При этих обозначениях равенство \eqref
$$
\lim_<\Delta x\rightarrow 0>\Delta y=0.\nonumber
$$
Таким образом, непрерывность функции в точке означает, что бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.
Показать, что функция \(f(x)\) непрерывна в точке \(a\), если:
По аналогии с понятием предела слева (справа) вводится понятие непрерывности слева (справа). Если функция \(f\) определена на полуинтервале \((a-\delta,a]\) и \(\displaystyle \lim_
Аналогично, если функция \(f\) определена на полуинтервале \([a,a+\delta)\) и \(f(a+0)=f(a)\), то эту функцию называют непрерывной справа в точке \(a\).
Например, функция \(f(x)=[x]\) непрерывна справа в точке \(x=1\) и не является непрерывной слева в этой точке, так как \(f(1-0)=0,\;f(1+0)=f(1)=1\).
Очевидно, функция непрерывна в данной точке тогда и только тогда, когда она непрерывна как справа, так и слева в этой точке.
Точки разрыва.
Будем предполагать, что функция \(f\) определена в некоторой проколотой окрестности точки \(a\).
Точку \(a\) назовем точкой разрыва функции \(f\), если эта функция либо не определена в точке \(a\), либо определена, но не является непрерывной в точке \(a\).
Следовательно, \(a\) — точка разрыва функции \(f\), если не выполняется по крайней мере одно из следующих условий:
Если \(a\) — точка разрыва функции \(f\), причем в этой точке существуют конечные пределы слева и справа, то есть \(\displaystyle \lim_
Если \(x=a\) — точка разрыва первого рода функции \(f(x)\), то разность \(f(a+0)-f(a-0)\) называют скачком функции в точке \(a\). В случае когда \(f(a+0)=f(a-0)\), точку \(a\) называют точкой устранимого разрыва. Полагая \(f(a)=f(a+0)=f(a-0)=A\), получим функцию
$$
f(x)=\left\<\begin
$$
непрерывную в точке \(a\) и совпадающую с \(f(x)\) при \(x\neq a\). В этом случае говорят, что функция доопределена до непрерывности в точке \(a\).
Пусть \(x=a\) — точка разрыва функции \(f\), не являющаяся точкой разрыва первого рода. Тогда ее называют точкой разрыва второго рода функции \(f\). В такой точке хотя бы один из односторонних пределов либо не существует, либо бесконечен.
Например, для функции \(f(x)=\displaystyle x\sin<\frac<1>
$$
\overline
x\sin<\frac<1>
0,\;если\;x=0,
\end
$$
непрерывную в точке \(x=0\), так как
$$
\lim_
$$
Для функций \(\displaystyle \sin<\frac<1>
Если функция \(f\) определена на отрезке \([a,b]\) и монотонна, то она может иметь внутри этого отрезка точки разрыва только первого рода.
\(\circ\) Пусть \(x_0\) — произвольная точка интервала \((a,b)\). Функция \(f\) имеет в точке \(x_<0>\) конечные пределы слева и справа. Если, например, \(f\) — возрастающая функция, то
$$
f(x_<0>-0)\leq f(x_<0>)\leq f(x_<0>+0),\nonumber
$$
где \(f(x_<0>-0)\) и \(f(x_<0>+0)\) — соответственно пределы функции \(f\) слева и справа в точке \(x_<0>\).
Свойства функций, непрерывных в точке.
Локальные свойства непрерывной функции.
Если функция \(f\) непрерывна в точке \(a\), то она ограничена в некоторой окрестности этой точки, то есть
$$
\exists\delta>0\quad\exists C>0:\;\forall x\in U_<\delta>(a)\rightarrow|f(x)|\leq C\nonumber
$$
Если функция \(f\) непрерывна в точке \(a\), причем \(f(a)\neq 0\), то в некоторой окрестности точки \(a\) знак функции совпадает со знаком числа \(f(a)\), то есть
$$
\exists\delta>0:\quad\forall x\in U_<\delta>(a)\rightarrow \operatorname
$$
\(\circ\) Эти утверждения следуют из свойств пределов. \(\bullet\)
Непрерывность суммы, произведения и частного.
Если функции \(f\) и \(g\) непрерывны в точке \(a\), то функции \(f+g\), \(fg\) и \(f/g\) (при условии \(g(a)\neq 0\)) непрерывны в точке \(a\).
\(\circ\) Это утверждение следует из определения непрерывности и свойств пределов. \(\bullet\)
Непрерывность сложной функции.
Напомним, что такое сложная функция.
Пусть функции \(y=\varphi(x)\) и \(z=f(y)\) определены на множествах \(X\) и \(Y\) соответственно, причем множество значений функции \(\varphi\) содержится в области определения функции \(f\). Тогда функция, которая принимает при каждом \(x\in X\) значение \(F(x)=f(\varphi(x))\), называется сложной функцией или суперпозицией (композицией) функций \(\varphi\) и \(f\).
Если функция \(z=f(y)\) непрерывна в точке \(y_0\), а функция \(y=\varphi(x)\) непрерывна в точке \(x_0\), причем \(y_0=\varphi(x_0)\), то в некоторой окрестности точки \(x_0\) определена сложная функция \(f(\varphi(x_0))\), и эта функция непрерывна в точке \(x_0\).
\(\circ\) Пусть задано произвольное число \(\varepsilon>0\). В силу непрерывности функции \(f\) в точке \(y_0\) существует число \(\rho=\rho(\varepsilon)>0\) такое, что \(U_\rho(y_0)\subset D(f)\) и
$$
\forall y\in U_\rho(y_0)\rightarrow f(y)\in U_<\varepsilon>(z_<0>),\label
$$
где \(z_<0>=f(y_<0>)\).
В силу непрерывности функции \(\varphi\) в точке \(x_<0>\) для найденного в \eqref
$$
\forall x\in U_\delta(x_0)\rightarrow \phi (x)\in U_\rho (y_0).\label
$$
Из условий \eqref
$$
\forall x\in U_\delta(x_0)\rightarrow f(y)=f(\varphi(x))\in U_<\varepsilon>(z_<0>),\nonumber
$$
где \(z_0=f(\varphi(x_0))=f(y_<0>)\), то есть
$$
\forall \varepsilon>0\;\exists \delta>0:\quad \forall х\in U_\delta(x_0)\rightarrow f(\varphi(х))\in U_\varepsilon(\varphi(x_0)).\nonumber
$$
Это означает, в силу определения непрерывности, что функция \(f(\varphi(x))\) непрерывна в точке \(x_0\). \(\bullet\)
Соответствие между окрестностями точек \(x_0,\ y_0,\ z_0\) представлено на рис. 11.1. По заданному числу \(\varepsilon>0\) сначала находим \(\rho>0\), а затем для чисел \(\rho>0\) находим \(\delta>0\).
Рис. 11.1
Свойства функций, непрерывных на отрезке.
Функцию \(f(x)\) называют непрерывной на отрезке \([a,b]\), если она непрерывна в каждой точке интервала \((a,b)\) и, кроме того, непрерывна справа в точке \(a\) и непрерывна слева в точке \(b\).
Ограниченность непрерывной на отрезке функции.
Если функция \(f\) непрерывна на отрезке \([a,b]\), то она ограничена, то есть
$$
\exists C>0:\forall x\in[a,\ b]\rightarrow|f(x)|\leq C.\label
$$
\(\circ\) Предположим противное, тогда
$$
\forall C>0\;\exists x_
$$
Полагая в этом выражении \(C=1,2\ldots,n,\ldots,\) получим, что
$$
\forall n\in\mathbb
$$
Последовательность \(x_n\) ограничена, так как \(a\leq x_
$$
\lim_
$$
где в силу условия \eqref
$$
a\leq x_
$$
Из условий \eqref
$$
\displaystyle \lim_
$$
С другой стороны. утверждение \eqref
$$
|f(x_
$$
откуда следует, что \(\displaystyle \lim_
Теорема Вейерштрасса неверна для промежутков, не являющихся отрезками. Например, функция \(f(x)=\displaystyle \frac<1>
Достижимость точных граней.
Если функция \(f\) непрерывна на отрезке \([a,b]\), то она достигает своей точной верхней и нижней грани, то есть
$$
\exists\xi\in[a,b]:\quad f(\xi)=\sup_
$$
\(\circ\) Так как непрерывная на отрезке функция \(f(x)\) ограничена (теорема 3), то есть множество значений, принимаемых функцией \(f\) на отрезке \([a,b]\), ограничено, то существуют \(\displaystyle \sup_
Докажем утверждение \eqref
$$
\forall х\in [a,b]\rightarrow f(x)\leq M,\label
$$
$$
\forall\varepsilon>0\;\exists x(\varepsilon)\in[a,b]:\quad f(x(\varepsilon))>M-\varepsilon.\label
$$
Полагая \(\varepsilon=\displaystyle \frac<1><2>, \displaystyle \frac<1><3>,\ldots,\frac<1>
$$
x_n\in [a,b],\label
$$
$$
f(x_
$$
Из соотношений \eqref
$$
\forall n\in\mathbb
Теорема 4 неверна для интервалов: функция, непрерывная на интервале, может не достигать своих точных граней. Например, функция \(f(x)=x^<2>\) не достигает на интервале (0,1) своей точной нижней грани, равной нулю, и точной верхней грани, равной единице.
Промежуточные значения.
(теорема Коши о нулях непрерывной функции)
Если функция \(f\) непрерывна на отрезке [a,b] и принимает в его концах значения разных знаков, то есть \(f(a)f(b)\; Доказательство
\(\circ\) Разделим отрезок \([a,b]\) пополам. Пусть \(d\) — середина этого отрезка. Если \(f(d)=0\), то теорема доказана, а если \(f(d)\neq 0\), то в концах одного из отрезков \([a,d],\ [d,b]\) функция \(f\) принимает значения разных знаков. Обозначим этот отрезок \(\Delta_<1>=[a_<1>,b_<1>]\). Пусть \(d_<1>\) — середина отрезка \(\Delta_1\). Возможны два случая:
Продолжая эти рассуждения, получим:
С другой стороны, из неравенства \eqref
$$
\exists n_0\in\mathbb
Теорема 5 утверждает, что график функции \(y=f(x)\), непрерывной на отрезке \([a,b]\) и принимающей в его концах значения разных знаков, пересекает ось \(Ox\) (рис. 11.2) хотя бы в одной точке отрезка \([a,b]\).
Рис. 11.2
(теорема Коши о промежуточных значениях)
Если функция \(f\) непрерывна на отрезке \([a,b]\) и \(f(a)\neq (b)\), то для каждого значения \(C\), заключенного между \(f(a)\) и \(f(b)\), найдется точка \(\xi\in [a,b]\) такая, что \(f(\xi)=C\).
\(\circ\) Обозначим \(f(a)=A,\ f(b)=B\). По условию \(А\neq В\). Пусть, например, \(A 0\) и по теореме 5 найдется точка \(\xi\in [a,b]\) такая, что \(\varpi(\xi)=0\), то есть \(f(\xi)=C\). Утверждение \eqref
Если функция \(f\) непрерывна на отрезке \([a,b],\ m=\displaystyle \inf_
\(\circ\) Для всех \(x\in[a,b]\) выполняется неравенство \(m\leq f(x)\leq M\), причем согласно теореме 4 функция \(f\) принимает на отрезке \([a,b]\) значения, равные \(m\) и \(М\). Все значения из отрезка \([m,M]\) функция принимает по теореме 6. Отрезок \([m,M]\) вырождается в точку, если \(f(x)=const\) на отрезке \([a,b]\). \(\bullet\)
Существование и непрерывность функции, обратной для непрерывной и строго монотонной функции.
Ранее мы уже рассматривали понятие обратной функции. Докажем теорему о существовании и непрерывности обратной функции.
Если функция \(y=f(x)\) непрерывна и строго возрастает на отрезке \([a,b]\), то на отрезке \([f(a),(b)]\) определена функция \(x=g(y)\), обратная к f, непрерывная и строго возрастающая.
\(\circ\) Существование обратной функции. Обозначим \(A=f(a),\;B=f(b)\). Так как f — возрастающая функция, то для всех \(х\in [a,b]\) выполняется неравенство \(A\leq f(x)\leq B\), где \(A= \displaystyle \inf_
Согласно определению обратной функции (\S\ 9,п. 9) нужно доказать, что для каждого \(у_0\in [A,В]\) уравнение
$$
f(x)=y_<0>\label
$$
имеет единственный корень \(x=x_<0>\), причем \(x_0\in [a,b]\).
Существование хотя бы одного корня уравнения \eqref
Предположим, что наряду с корнем \(x=x_<0>\) уравнение \eqref
Пусть, например, \(\widetilde
$$
g(f(x))=x,\quad x\in[a,b],\quad f(g(y))=y,\quad u\in [A,B].\label
$$
Монотонность обратной функции. Докажем, что \(g(y)\) — строго возрастающая на отрезке [A,В] функция, то есть
$$
\forall\;y_<1>,\;y_<2>\in [A,B]:\quad y_<1>\; Замечание 6
Если функция \(f\) непрерывна и строго убывает на отрезке \([a,b]\), то обратная к ней функция \(g\) непрерывна и строго убывает на отрезке \([f(b),f(a)]\).
Аналогично формулируется и доказывается теорема о функции \(g\), обратной к функции \(f\), для случаев, когда функция \(f\) задана на интервале (конечном либо бесконечном) и полуинтервале.
Если функция \(f\) определена, строго возрастает и непрерывна на интервале \((a,b)\), то обратная функция \(g\) определена, строго возрастает и непрерывна на интервале \((A,B)\), где
$$
A=\lim_
$$