Изучение объемных фигур начинается со школы. В это время происходит знакомство с цилиндром, параллелепипедом, шаром, конусом и другими геометрическими телами. Одна из главных задача, которая сопровождает учеников, это вычисление объема фигур. Оперируя формулами, удается произвести расчет и получить ответ в метрах кубических (м 3 ).
Чтобы вычислить объем, применяйте следующее правило – длину, ширину и высоту нужно перемножить между собой. Объем для каждой фигуры рассчитывается по специальной формуле, о которых, мы расскажем ниже.
Содержание:
Как найти объем трехмерных объектов
Начнем с расчета для прямоугольных и квадратных фигур. Придерживайтесь инструкции и постарайтесь рассчитать самостоятельно, чтобы закрепить знания. Числа, указанные в описании, берутся в качестве примера. Вы можете производить другие расчеты.
Полученное число необходимо перевести в кубические метры. Для этого конечный результат делим на 1.000.000. Пример будет выглядеть следующим образом – 4256 м 3 /1000000 = 0,004256 м 3
Как найти объем для фигур цилиндрической формы
Цилиндр – это тело, ограниченное цилиндрической поверхностью с замкнутой направляющей и двумя параллельными плоскостями. Одним из видов цилиндра является призма.
Чтобы произвести вычисления нужно найти диаметр тела (ширина) одного круглого основания и полученное число поделить на 2. Допустим, диаметр основания равен 30 см.
Как рассчитать объем треугольной пирамиды
Пирамида – это многогранник, где есть одна грань основания и боковые грани. Пирамиды бывают треугольные, четырехугольные и другие. Также есть правильная и усеченная пирамида. Объем для каждой фигуры рассчитывается по разным формулам.
Расчёт четырехгранной пирамиды производится тем же принципом. Потренируйтесь, используя разные задачи. Чтобы все замеры происходили правильно, не забудьте обзавестись хорошей линейкой, также на помощь придёт калькулятор, который поможет перемножать числа между собой.
В интернете представлено много онлайн-калькулятор, они дают подсказку и позволяют без лишних трудностей рассчитать объём куба, цилиндра и других фигур. Перед началом пользования таких подсказок, необходимо обладать базовыми знаниями, чтобы быстрее разобраться в полученном результате.
Как посчитать объем куба
Параллелепипед складывается из шести граней, которые являются параллелограммом. Все противоположные грани попарно равны и параллельны. Фигура получилась 4 диагонали, и все они пересекаются в одной точке, разделяют эту точку пополам. Параллелепипед, грани которого являются квадратами, будет называться кубом.
Как найти объем прямоугольного параллелепипеда
Прямоугольным параллелепипедом называется фигура, у которой все шесть граней прямоугольники. Для вычисления работает следующая формула:
Где H ‒ высота, S ‒ площадь основания, abc – ребра. Чтобы произвести расчеты и найти объём, необходимо узнать произведение площади основания на высоту. Например: 1 см * 2 см * 3 см = 6 см 3
Советы по измерению:
Убедитесь, что перед вами параллелепипед, а не куб, так как в случае с кубом расчетная формула будет проще.
Как найти объем цилиндра
Цилиндр считать круглой фигурой, т.к. в его основании лежит круг. Чтобы произвести вычисления, необходимо узнать произведение площади основания на высоту. Для этого используется следующая формула:
Где r ‒ радиус цилиндра, h – высота цилиндра. Чисто π – является константой и равно 3,14. Оно всегда одинаковое и не требует никаких измерений. Рассмотрим на примере:
3,14 * 2 см 2 * 5 см = 62.831853071796 = 63см 3
Если вы не можете вычислить радиус, измерьте диаметр с помощью формулы преобразования.
Как найти объем пирамиды
фото 6 — посчитать объём
Чтобы произвести расчет объема, нам нужно найти произведение площади основания на высоту. Для вычисления используется следующая формула:
Где S (A*B*C*D*E) – площадь основания пирамиды, а h ‒ высота пирамиды. Рассмотрим на примере:
V = 3 * 2 = 2 см 3 ‒ это и будет являться объемом искомой геометрической фигуры.
Не забывайте, что пирамиды бывают усеченные, правильные, трех- и четырехугольные. Для каждого тела действуют свои расчеты, но важно начинать с основного и не упускать базовые знания, в дальнейшем все примеры будут базироваться именно на них.
Если какая-то формула осталась непонятной, лучше вернуться к этому и поупражняться ещё раз, доведя знание до автоматизма. Так решение задач не будет вызывать сложности. Постоянная практика ‒ это основа успешного результата.
Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.
Объемы геометрических фигур.
Фигура
Формула
Чертеж
Параллелепипед.
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.
Цилиндр.
Объем цилиндра равен произведению площади основания на высоту.
Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.
Пирамида.
Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).
Правильная пирамида — это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.
Правильная треугольная пирамида — это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.
Правильная четырехугольная пирамида — это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.
Тетраэдр — это пирамида, у которой все грани — равносторонние треугольники.
Усеченная пирамида.
Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.
Конус — это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.
Усеченный конус получится, если в конусе провести сечение, параллельное основанию.
V = 1/3 πh (R 2 + Rr + r 2 )
Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.
Призма.
Объем призмы равен произведению площади основания призмы, на высоту.
Сектор шара.
Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.
Шаровой слой — это часть шара, заключенная между двумя секущими параллельными плоскостями.
Объем – мера вместимости, выраженная для геометрических фигур в виде формулы V=l*b*h. Где l – длина, b – ширина, h – высота объекта. При наличии только одной или двух характеристик вычислить объем в большинстве случаев нельзя. Однако при некоторых условиях представляется возможным сделатьэто через площадь.
Задача третья: вычислить объем, если известна площадь и некоторые другие условия.Условия могут быть разные, помимо площади могут быть известны другие параметры. Длина или ширина могут быть равны высоте, больше или меньше высоты в несколькораз. Также могут даваться дополнительные сведения о фигурах, которые помогут в вычислениях объема.Пример 1: найдите объем призмы, если известно, что площадь одной стороны 60 см², длина 10 см, а высота равна ширине.S = l * b; l = S : b l = 60 см² : 10 см = 6 см – ширина призмы. Т.к. ширина равна высоте, вычислите объем: V=l*b*h V = 10 см * 6 см *6 см = 360 см³Ответ:объем призмы 360 см³
Пример 2: найдите объем фигуры, если площадь 28 см², длина фигуры 7 см. Дополнительное условие: четыре стороны равны между собой, и соединены друг с другом по ширине.Для решения следует построить параллелепипед. l = S : b l = 28 см² : 7 см = 4 см – ширинаКаждая сторона представляет собой прямоугольник, длина которого 7 см, а ширина 4 см. Если четыре таких прямоугольника соединить между собой по ширине, то получится параллелепипед. Длина и ширина в нем по 7 см, а высота 4 см. V = 7 см * 7 см * 4 см = 196 см³Ответ: Объем параллелепипеда = 196 см³.
Один метр кубический является единицей объема. Чтобы найти объем какого-то предмета, имеющего КУБИЧЕСКУЮ форму (например, параллелепипед), нужно его длину (в метрах) умножить на ширину (тоже в метрах) и умножить на высоту (опять в метрах). Логично, не правда ли, что метр, умноженный сам на себя три раза превращается в метр кубический!
Если требуется посчитать объем предмета НЕ КУБИЧЕСКОЙ формы (например, шар, призма, конус), то для вычисления их объема есть специальные формулы. Если они вам нужны, то советую посмотреть учебник по геометрии.
Думаю, всем понятно, что формула расчёта объёма в кубических метрах для каждой геометрической фигуры будет разной.
Поэтому нужно произвести все необходимые измерения, а затем воспользоваться соответствующей формулой. Если фигура имеет неправильную формулу, то разбиваем её на несколько стандартных фигур, а затем складываем их объёмы между собой.
Нужно помнить, что все измерения проводятся именно в метрах. Например, если высота объекта 70 см, то её нужно перевести в метры: 70 см = 0,7 м.
Для того, чтобы посчитать объём, нужно воспользоваться формулой нахождения объёма прямоугольного параллелепипеда.
Таким образом, измеряем длину / ширину / высоту комнаты, а затем перемножаем эти значения между собой.
Например, длина комнаты = 6 м, ширина = 5 м, высота = 2,5 м.
S² — тoжe плoщaдь пoпepeчнoгo ceчeния, нo нe гopизoнтaльнoгo, a вepтикaльнoгo. Ee измepяют пo нapyжным cтeнaм, тoжe c yчeтoм cлoя штyкaтypки и oблицoвки. B этoм cлyчae для oпpeдeлeния плoщaди нyжнa выcoтa здaния и eгo шиpинa.
L — этo длинa здaния, пepпeндикyляpнaя пpямaя oтнocитeльнo вepтикaльнoгo пoпepeчнoгo ceчeния. Ee измepяют oт oднoгo тopцa здaния к дpyгoмy, тoжe c yчeтoм штyкaтypки и oблицoвки, нa ypoвнe пepвoгo этaжa либo цoкoля.
Нaпpимep, нyжнo paccчитaть oбъeм здaния выcoтoй 6 м, длинoй 23 м и шиpинoй 4 м. Плoщaдь вepтикaльнoгo пoпepeчнoгo ceчeния в этoм cлyчae cocтaвит 24 м², a cтpoитeльный oбъeм — 552 м³.
Ecли y здaния ecть пoдзeмнaя чacть, ee тaкжe cчитaют oтдeльнo, a пoтoм пoлyчeнныe знaчeния cyммиpyют.
B этoм cлyчae S — cyммa плoщaдeй вcex этaжeй, или oбщaя плoщaдь. Ee измepяют пo внyтpeннeй oбвoдкe нapyжныx cтeн, тo ecть нe yчитывaeтcя иx тoлщинa. Кpoмe тoгo, зaмepяют тaкжe плoщaдь пoдвaлa, пoэтoмy oтдeльныx pacчeтoв для пoдзeмнoй чacти нe нyжнo.
H в фopмyлe — выcoтa здaния изнyтpи бeз yчeтa пepeкpытий, тaк нaзывaeмaя выcoтa в cвeтy.
К — пoпpaвoчный кoэффициeнт, кoтopый yчитывaeт тoлщинy cтeн. Для жилыx здaний oн cocтaвляeт 0,8.
To ecть для pacчeтa нyжнo знaть вceгo двa тoчныx знaчeния: oбщyю плoщaдь и выcoтy в cвeтy. Дoпycтим, плoщaдь cocтaвляeт 2 000 м², a выcoтa в cвeтy — 15 м. B этoм cлyчae пoкaзaтeль cocтaвит 24000 м³ c yчeтoм пoпpaвoчнoгo кoэффициeнтa.
Ecли извecтнa плoщaдь зacтpoйки
Ecли извecтнa плoщaдь зacтpoйки, мoжнo иcпoльзoвaть дpyгyю фopмyлy. B нeй бoльшe пepeмeнныx, и выглядит oнa тaк:
S¹ в этoм cлyчae — плoщaдь oбщeй зacтpoйки. Ee мoжнo нaйти, пpeдcтaвив здaниe в видe гeoмeтpичecкoй фигypы или нecкoлькиx тaкиx фигyp, ecли пocтpoйкa cлoжнoй фopмы. H¹ — выcoтa дoмa, в кoтopoй мoжнo нe yчитывaть выcтyпaющиe чacти кpыши.