как узнать объем конуса
Формула объема конуса
Круглый конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов, поэтому круглый конус называют также конусом вращения.
Связанные определения для конуса
Образующая конуса. Отрезок, соединяющий вершину и границу основания, называется образующей конуса.
Образующая поверхность конуса. Объединение образующих конуса называется образующей (или боковой) поверхностью конуса.
Коническая поверхность. Образующая поверхность конуса является конической поверхностью.
Высота конуса (H). Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса.
Прямой конус. Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется осью конуса.
Прямой круговой конус. Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось конуса).
Эллиптическим конус. Конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный объём).
Усечённый конус. Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом, или коническим слоем.
Объем прямого углового конуса
Первый способ вычисления объема конуса
Объем конуса равен одной трети произведения площади основания на высоту
Второй способ вычисления объема конуса
Объем конуса равен одной трети произведения числа пи (3.1415) на квадрат радиуса основания на высоту.
\[ \LARGE V = \frac
Калькулятор объема конуса
Объем усеченного конуса
Усеченный конус получится, если в конусе провести сечение, параллельное основанию. Тело ограниченное этим сечением, основанием и боковой поверхностью конуса называется усеченным конусом.
Первый способ вычисления объема усеченного конуса
Объем усеченного конуса вычисляется по формуле:
\[ \LARGE V = \frac<1> <3>\left( H\cdot S_2 + h \cdot s_1 \right) \]
Второй способ вычисления объема усеченного конуса
Объем усеченного конуса вычисляется по формуле:
\[ \LARGE V = \frac<1> <3>\pi h \left( R^2 + R \cdot r + r^2 \right) \]
Калькулятор объема усечённого конуса
Объем конуса можно вычислить по формуле \( V=\dfrac<1><3>\pi R^2 H \)
Плоскость, проведенная через середину высоты конуса и параллельно его основанию, является в двумерном пространстве средней линией равнобедренного треугольника (конус проецируется в равнобедренный треугольник). Таким образом получается два подобных треугольника с коэффициентом подобия 2.
\( V_1=64 \) — объем большего конуса, \( H_1=2H_2, \) где \( H_1 \) — высота большого, а \( H_2 \) — меньшего конуса (из условия), \( R_1=2R_2, \) где \( R_1 \) — радиус основания большего, а \( R_2 \) — радиус основания меньшего конуса (из подобия треугольников).
Тогда \( V_2=\dfrac<1><3>\pi R_2^2 H_2=\dfrac<1><3>\pi (\dfrac
Нахождение объема конуса: формула и задачи
В данной публикации мы рассмотрим, каким образом можно посчитать объем прямого кругового конуса и разберем примеры решения задач.
Формула вычисления объема
1. Через площадь основания и высоту
Объем (V) конуса равняется одной третьей произведения его высоты на площадь основания:
2. Через радиус основания и высоту
Следовательно, формулу для вычисления объема конуса можно представить в виде:
Т.е. объем конуса равняется одной третьей произведения его высоты на число π и на радиус основания в квадрате.
Примечание: в расчетах значение числа π округляется до 3,14.
Формула для нахождения объема усеченного конуса представлена в отдельной публикации.
Примеры задач
Решение:
Применим первую формулу, подставив в нее заданные значения:
Задание 2
Высота конуса равна 7 см, а его радиус – 3 см. Найдите объем фигуры.
Решение:
Воспользовавшись второй, более расширенной, формулой получаем:
Объём конуса
Онлайн калькулятор
Через площадь основания и высоту
Площадь основания Sосн =
Высота h =
Через радиус и другие параметры
=
=
Теория
Объём конуса через площадь основания и высоту
Чему равен объём конуса V, если площадь его основания Sосн, а высота h:
Формула
Пример
Для примера посчитаем, чему равен объём конуса, у которого площадь основания Sосн = 3 см², а высота h = 5 см :
Объём конуса через образующую и радиус
Чему равен объём конуса V, если его образующая l, радиус основания r?
Формула
Пример
Для примера посчитаем, чему равен объём конуса, у которого образующая l = 5 см, а радиус основания r = 2 см:
Объём конуса через радиус и высоту
Чему равен объём конуса V, если радиус его основания r, а высота h?
Формула
Пример
Для примера посчитаем объём конуса, у которого высота h = 6 см, а радиус основания r = 3 см:
V = ⅓ ⋅ 3.14 ⋅ 3² ⋅ 6 = 169.56 /3 = 56.52 см³
Объём конуса через угол раствора (α) и радиус
Чему равен объём конуса V, если угол раствора α, а радиус основания r?
Формула
Пример
Для примера посчитаем объём конуса, имеющего угол раствора α = 30° и радиус основания r = 2 см:
V = ⅓ ⋅ 3.14 ⋅ 2³ /tg(30/2) ≈ 1,0467 ⋅ 8 / 0.2679 ≈ 31.25 см³
Объём конуса через угол β и радиус
Чему равен объём конуса V, если известны угол β и радиус основания r?
Формула
Пример
Для примера посчитаем объём конуса, имеющего угол β = 20° и радиус основания r = 3 см:
V = ⅓ ⋅ 3.14 ⋅ 3³ /tg 20 ≈ 1,0467 ⋅ 27 / 0.36397 ≈ 77.64 см³
Объём конуса через угол γ и радиус
Чему равен объём конуса V, если известны угол γ и радиус основания r?
Формула
Пример
Для примера посчитаем объём конуса, имеющего угол γ = 45° и радиус основания r = 2 см:
V = ⅓ ⋅ 3.14 ⋅ 2³ ⋅ tg 45 ≈ 1,0467 ⋅ 8 ⋅ 1 ≈ 8.37 см³
Объемы фигур. Объем конуса.
Конус — тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной
точки (вершины конуса) и проходящих через плоскую поверхность.
Иногда конусом называют часть такого тела, имеющую ограниченный объём и полученную объединением
всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае
называют основанием конуса, а конус называют опирающимся на данное основание).
Воспользуйтесь онлайн калькулятором для расчета объема пирамиды: объем конуса, онлайн расчет.
Для расчета объемов других тел воспользуйтесь этим калькулятором: калькулятор объемов фигур.
Образующая поверхность конуса является конической поверхностью.
отрезка), называется высотой конуса.
конуса, внутри конуса).
ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то
конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется
осью конуса.
совпадает с его центром симметрии.
прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось
эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный
между вершиной и основанием, называется усечённым конусом, или коническим слоем.
Объем конуса вычисляется по формуле:
где R — радиус основания конуса,