как узнать объем куба формула
Объемы фигур. Объем куба.
У куба шесть квадратных граней, которые пересекаются под прямым углом и стороны которых равны.
Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна
где s – длина одного (любого) ребра куба.
Воспользуйтесь онлайн калькулятором для расчета объема куба: объем куба, онлайн расчет.
Для расчета объемов других тел воспользуйтесь этим калькулятором: калькулятор объемов фигур.
Метод 1 из 3: Возведение в куб ребра куба
вычисляете объем реального объекта кубической формы, измерьте его ребро линейкой или рулеткой.
Рассмотрим пример. Ребро куба равно 5 см. Найдите объем куба.
Возведите в куб длину ребра куба. Другими словами, умножьте длину ребра куба саму на себя три раза.
и, таким образом, вы вычислите объем куба.
Этот процесс аналогичен процессу нахождения площади основания куба (равна произведению длины на
ширину квадрата в основании) и последующему умножению площади основания на высоту куба (то есть,
другими словами, вы умножаете длину на ширину и на высоту). Так как в кубе длина ребра равна ширине и
равна высоте, то это процесс можно заменить возведением ребра куба в третью степень.
В нашем примере объем куба равен:
характеристика пространства, занимаемого телом, то единицами измерения объема являются кубические
В нашем примере размер ребра куба давался в сантиметрах, поэтому объем будет измеряться в кубических
Если размер ребра куба дается в других единицах, то и объем куба измеряется в соответствующих
Метод 2 из 3: Вычисление объема по площади поверхности
можете найти ребро куба и его объем. Например, если вам дана площадь поверхности куба, то разделите
ее на 6, из полученного значения извлеките квадратный корень и вы найдете длину ребра куба. Затем
возведите длину ребра куба в третью степень и вычислите объем куба.
где s – длина ребра куба (то есть вы находите площадь одной грани куба, а затем умножаете ее на 6, так
как у куба 6 равных граней).
одной грани и получите длину ребра куба.
В нашем примере, √8,33 = 2,89 см.
Метод 3 из 3: Вычисление объема по диагонали
если в задаче дана диагональ грани (любой) куба, то вы можете найти длину ребра куба, разделив
Рассмотрим пример. Диагональ грани куба равна 7 см. Найдите объем куба. В этом случае длина ребра куба
которой квадрат гипотенузы (в нашем случае диагональ грани куба) прямоугольного треугольника равен
сумме квадратов катетов (в нашем случае ребер), то есть:
дана диагональ куба, то вы можете найти длину ребра куба, разделив диагональ на √3.
Эта формула вытекает из теоремы Пифагора, согласно которой квадрат гипотенузы (в нашем случае
диагональ куба) прямоугольного треугольника равен сумме квадратов катетов (в нашем случае один катет –
это ребро, а второй катет – это диагональ грани куба, равная 2s 2 ), то есть
Рассмотрим пример. Диагональ куба равна 10 м. Найдите объем куба.
Объем куба
Свойства
Куб представляет собой прямоугольный параллелепипед, у которого все ребра равны между собой. Поэтому объем куба вычисляется не просто произведением всех трех его параметров, а возведением ребра куба в третью степень. Поэтому чтобы вычислить ребро куба через объем необходимо извлечь из последнего кубический корень. a=∛V
Площадь грани куба или одной его стороны равна площади квадрата, стороной которого является ребро куба, поэтому кубический корень из объема необходимо возвести во вторую степень. S=∛(V^2 )
Площадь боковой и полной поверхности куба состоят из четырех и шести таких граней соответственно, поэтому их формулы являются аналогией предыдущей с добавлением необходимых коэффициентов. S_(б.п.)=4∛(V^2 ) S_(п.п.)=6∛(V^2 )
Периметр куба равен сумме двенадцати его ребер, равных между собой, поэтому зная, что каждое ребро представлено в виде кубического корня из объема, необходимо умножить его на двенадцать. P=12a=12∛V
Чтобы вычислить диагональ грани куба, нужно вернуться к формуле диагонали квадрата, которым представлены грани. Согласно ей, чтобы найти диагональ, нужно умножить корень из двух на сторону квадрата – ребро куба в данном случае, или кубический корень из объема. d=a√2=∛V √2
Найти диагональ самого куба немного сложнее. Для этого три вершины – диагонали и прилегающего к ней бокового ребра – соединяются в прямоугольный треугольник через диагональ основания, и по теореме Пифагора выводится формула диагонали куба. (рис.2.1) a^2+d^2=D^2 D^2=a^2+2a^2 D^2=3a^2 D=a√3=∛V √3
Чтобы найти радиус сферы, вписанной в куб, через объем, нужно разделить его кубический корень, представляющий собой ребро куба, на два. (рис. 2.2) r=a/2=∛V/2
Радиус сферы, описанной вокруг куба, равен половине диагонали куба, поэтому подставив вместо диагонали необходимую формулу через объем, получим следующее выражение: (рис.2.3) R=D/2=(∛V √3)/2
Формулы объема геометрических фигур
Объем куба
Объем куба равен кубу длины его грани.
Формула объема куба:
Объем призмы
Объем призмы равен произведению площади основания призмы, на высоту.
Формула объема призмы:
Объем параллелепипеда
Объем параллелепипеда равен произведению площади основания на высоту.
Формула объема параллелепипеда:
Объем прямоугольного параллелепипеда
Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.
Формула объема прямоугольного параллелепипеда:
Объем пирамиды
Объем пирамиды равен трети от произведения площади ее основания на высоту.
Формула объема пирамиды:
Объем правильного тетраэдра
Формула объема правильного тетраэдра:
Объем цилиндра
Объем цилиндра равен произведению площади его основания на высоту.
Формулы объема цилиндра:
Объем конуса
Объем конуса равен трети от произведению площади его основания на высоту.
Формулы объема конуса:
Объем шара
Объем шара равен четырем третьим от его радиуса в кубе помноженного на число пи.
Формула объема шара:
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Формула объема.
Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.
Фигура | Формула | Чертеж |
---|---|---|