как узнать объем шара по диаметру
Объём шара
Онлайн калькулятор
Чему равен объём шара, если:
Чему равен объём шара, если:
Площадь поверхности шара Sпов =
Теория
Объём шара через радиус
Чему равен объём шара Vшара, если его радиус r?
Формула
Пример
Для примера посчитаем чему равен объём шара в кубических сантиметрах, если его радиус r = 2 см:
Vшара = 4/3 ⋅ 3.14 ⋅ 2³ = 4/3 ⋅ 3.14 ⋅ 8 = 100.48/3 ≈ 33.493 см³
Объём шара через диаметр
Чему равен объём шара Vшара, если его диаметр d?
Формула
Пример
Для примера посчитаем чему равен объём шара в кубических метрах, если его диаметр d = 0.5 м:
Vшара = 1/6 ⋅ π ⋅ 0.5³ = (3.14 ⋅ 0.125) / 6 ≈ 0.0654 м³
Объём шара через длину окружности
Чему равен объём шара Vшара, если длина его окружности L?
Формула
Пример
Для примера посчитаем чему равен объём шара в кубических миллиметрах, если длина окружности у него L = 50 мм:
Vшара = 50³ ⁄ 6 ⋅ 3.14² = 125000 / 59.1576 ≈ 2113 мм³
Объём шара через площадь поверхности шара
Чему равен объём шара Vшара, если площадь его поверхности Sпов?
Формула
Пример
Для примера посчитаем чему равен объём шара в кубических сантиметрах, если площадь поверхности у него Sпов = 225 см²:
Нахождение объема шара: формула и задачи
В данной публикации мы рассмотрим, как можно найти объем шара и разберем примеры решения задач для закрепления материала.
Формула вычисления объема шара
1. Через радиус
Примечание: в расчетах значение числа π округляется до 3,14.
2. Через диаметр
Диаметр шара равняется двум его радиусам: d = 2R. А значит, формула вычисления объема может выглядеть следующим образом:
Примеры задач
Задание 1
Вычислите объем шара, если его радиус равняется 3 см.
Решение:
Применив первую формулу (через радиус) получаем:
Задание 2
Найдите объем шара, если известно, что его диаметр равен 12 см.
Решение:
Используем вторую формулу, в которой задействован диаметр:
Рассчитать объем шара по радиусу или диаметру
Рассчитать объем шара по радиусу или диаметру.
Рассчитать объем шара вы можете радиусу или диаметру шара.
Калькулятор расчета объема шара:
Формулы расчета объема шара:
Формула расчета объема шара по радиусу:
π – число пи, π ≈ 3,1415926535,
Формула расчета объема шара по диаметру:
π – число пи, π ≈ 3,1415926535,
Шар образуется вращением полукруга около его неподвижного диаметра на 360°. Этот диаметр называется осью шара, а оба конца указанного диаметра – полюсами шара.
Шар также образуется вращением круга вокруг его неподвижного диаметра на 180°.
Сфера (поверхность шара) – это совокупность всех точек (т.е. множество всех точек) в трехмерном пространстве, которые равноудалены от одной точки O, называющейся центром сферы.
Шар – это совокупность всех точек в трехмерном пространстве, расстояние до которых не превышает заданного расстояния от точки, называемой центром шара (О).
Шар – это совокупность всех точек трехмерного пространства ограниченных сферой.
Радиус сферы (шара) (r) – это расстояние от центра сферы (шара) O к любой точке сферы ( поверхности шара).
Диаметр сферы (шара) (d) – это отрезок, соединяющий две точки сферы ( поверхности шара) и проходящий через ее центр.
Объемы фигур
Что такое шар?
Введите радиус шара:
Шар – геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние называется радиусом шара.
Формула объема шара: ,
где R – радиус шара
Шар, сфера и их части
Введем следующие определения, связанные с шаром, сферой и их частями.
Определение 1. Сферой с центром в точке O и радиусом r называют множество точек, расстояние от которых до точки O равно r (рис. 1).
Определение 2. Шаром с центром в точке O и радиусом r называют множество точек, расстояние от которых до точки O не превосходит r (рис. 1).
Таким образом, сфера с центром в точке O и радиусом r является поверхностью шара с центром в точке O и радиусом r.
Замечание. Радиусом сферы ( радиусом шара ) называют отрезок, соединяющий любую точку сферы с центром сферы. Длину этого отрезка также часто называют радиусом сферы ( радиусом шара ).
Окружности, ограничивающие сферический пояс, называют основаниями сферического пояса.
Расстояние между плоскостями Расстояние между плоскостями оснований сферического пояса называют высотой сферического пояса.
Из определений 3 и 4 следует, что шаровой слой ограничен сферическим поясом и двумя кругами, плоскости которых параллельны параллельны между собой. Эти круги называют основаниями шарового слоя.
Определение 5. Сферическим сегментом называют каждую из двух частей, на которые делит сферу пересекающая ее плоскость (рис. 3).
Определение 6. Шаровым сегментом называют каждую из двух частей, на которые делит шар пересекающая ее плоскость (рис. 3).
Определение 7. Шаровым сектором называют фигуру, состоящую из всех отрезков, соединяющих точки сферического сегмента с центром сферы (рис. 6).
Молярный объём
Vm — величина, равная отношению объёма V системы (тела) к её количеству вещества n:
Молярный объем для газов при нормальных условиях: Vm = 22,4 л/моль
Формула вычисления объема шара
1. Через радиус
Примечание: в расчетах значение числа π округляется до 3,14.
2. Через диаметр
Диаметр шара равняется двум его радиусам: d = 2R. А значит, формула вычисления объема может выглядеть следующим образом:
Формула расчёта объёма шара
Объем шара можно вычислить по формуле:
Как найти объем трехмерных объектов
Начнем с расчета для прямоугольных и квадратных фигур. Придерживайтесь инструкции и постарайтесь рассчитать самостоятельно, чтобы закрепить знания. Числа, указанные в описании, берутся в качестве примера. Вы можете производить другие расчеты.
Полученное число необходимо перевести в кубические метры. Для этого конечный результат делим на 1.000.000. Пример будет выглядеть следующим образом – 4256 м 3 /1000000 = 0,004256 м 3
Площади сферы и ее частей. Объемы шара и его частей
В следующей таблице приведены формулы, позволяющие вычислить объем шара и объемы его частей, а также площадь сферы и площади ее частей.
Фигура | Рисунок | Формула | Описание |
Сфера | Объем шара | ||
Сферический пояс | Объем шарового слоя | ||
Сферический сегмент | Объем шарового сегмента | ||
Шаровой сектор | Объем шарового сектора |
где
r – радиус сферы.
где
r – радиус шара.
Площадь сферического пояса:
Объем шарового слоя:
Площадь сферического сегмента:
Объем шарового сегмента:
Объем шарового сектора:
Прочие единицы измерения
Пример нахождения объёма шара
Найти объем шара радиусом 10 сантиметров.
Для того чтобы вычислить объем шара формула используется следующая:
Таким образом, при радиусе 10 сантиметров объем шара равен:
В геометрии шар определяется как некое тело, представляющее собой совокупность всех точек пространства, которые располагаются от центра на расстоянии, не более заданного, называемого радиусом шара. Поверхность шара именуется сферой, а сам он образуется путем вращения полукруга около его диаметра, остающегося неподвижным.
С этим геометрическим телом очень часто сталкиваются инженеры-конструкторы и архитекторы, которым часто приходится вычислять объем шара. Скажем, в конструкции передней подвески подавляющего большинства современных автомобилей используются так называемые шаровые опоры, в которых, как нетрудно догадаться из самого названия, одними из основных элементов являются именно шары. С их помощью происходит соединение ступиц управляемых колес и рычагов. От того, насколько правильно будет вычислен их объем, во многом зависит не только долговечность этих узлов и правильность их работы, но и безопасность движения.
В технике широчайшее распространение получили такие детали, как шариковые подшипники, с помощью которых происходит крепление осей в неподвижных частях различных узлов и агрегатов и обеспечивается их вращение. Следует заметить, что при их расчете конструкторам требуется найти объем шара (а точнее – шаров, помещаемых в обойму) с высокой степенью точности. Что касается изготовления металлических шариков для подшипников, то они производятся из металлической проволоки при помощи сложного технологического процесса, включающего в себя стадии формовки, закалки, грубой шлифовки, чистовой притирки и очистки. Кстати говоря, те шарики, которые входят в конструкцию всех шариковых ручек, изготавливаются по точно такой же технологии.
Достаточно часто шары используются и в архитектуре, причем там они чаще всего являются декоративными элементами зданий и других сооружений. В большинстве случаев они изготавливаются из гранита, что зачастую требует больших затрат ручного труда. Конечно, соблюдать столь высокую точность изготовления этих шаров, как тех, которые применяются в различных агрегатах и механизмах, не требуется.
Без шаров немыслима такая интересная и популярная игра, как бильярд. Для их производства используются различные материалы (кость, камень, металл, пластмассы) и используются различные технологические процессы. Одним из основных требований, предъявляемых к бильярдным шарам, является их высокая прочность и способность выдерживать высокие механические нагрузки (прежде всего, ударные). Кроме того, их поверхность должна представлять собой точную сферу для того, чтобы обеспечивалось плавное и ровное качение по поверхности бильярдных столов.
Наконец, без таких геометрических тел, как шары, не обходится ни одна новогодняя или рождественская елка. Изготавливаются эти украшения в большинстве случаев из стекла методом выдувания, и при их производстве наибольшее внимание уделяется не точности размеров, а эстетичности изделий. Технологический процесс при этом практически полностью автоматизирован и вручную елочные шары только упаковываются.
Как найти объем для фигур цилиндрической формы
Цилиндр – это тело, ограниченное цилиндрической поверхностью с замкнутой направляющей и двумя параллельными плоскостями. Одним из видов цилиндра является призма.
Чтобы произвести вычисления нужно найти диаметр тела (ширина) одного круглого основания и полученное число поделить на 2. Допустим, диаметр основания равен 30 см.
Объем шарового сегмента
Шаровой сегмент – часть шара, отсекаемая какой нибудь плоскостью. Объем шарового сегмента вычисляется по формуле:
[ LARGE V = <1 over 3>cdot pi cdot h^2 cdot (3 cdot R – h) ]
где:
V – объем шарового сегмента
h – высота шарового сегмента
R – радиус шарового сегмента
π – число пи (3.1415)
Советы
Примеры задач
Задание 1
Вычислите объем шара, если его радиус равняется 3 см.
Решение:
Применив первую формулу (через радиус) получаем:
Задание 2
Найдите объем шара, если известно, что его диаметр равен 12 см.
Решение:
Используем вторую формулу, в которой задействован диаметр:
Онлайн калькулятор. Объем шара.
Используя этот онлайн калькулятор для вычисления объема шара, вы сможете очень просто и быстро найти объем шара, зная значения его радиуса.
Воспользовавшись онлайн калькулятором для вычисления объема шара, вы получите детальное решение вашего примера, которое позволит понять алгоритм решения задач и закрепить пройденный материал.
Найти объем шара
Ввод данных в калькулятор для вычисления объема шара
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
N.B. В онлайн калькуляте можно использовать величины в однаквых единицах измерения!
Если у вас возниели трудности с преобразованием едениц измерения воспользуйтесь конвертером единиц расстояния и длины, конвертером единиц площади и конвертером единиц объема.
Теория. Объем шара.
Формула для вычисления объема шара
Объем шара равен четырем третим от его радиуса в кубе помноженого на число пи.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
- как узнать объем через площадь
- как узнать объем ямы в м3