как узнать относительную атомную массу элемента
Урок 2. Относительная атомная масса химических элементов
В уроке 2 «Относительная атомная масса химических элементов» из курса «Химия для чайников» рассмотрим разные способы выражения массы химических элементов. Напоминаю, что в прошлом уроке «Атомы и химические элементы» мы рассмотрели, кто и когда высказал идею о том, что все вокруг состоит из атомов; также выяснили, что из себя представляет химический элемент и каким образом обозначается.
Чем различаются атомы разных элементов между собой? Вы уже знаете: массой, размерами и строением. На рисунке 30 показаны шаровые модели атомов некоторых химических элементов, конечно, не в реальных размерах, а многократно увеличенные. В действительности атомы настолько малы, что их невозможно рассмотреть даже в самые лучшие оптические микроскопы.
На заметку: В конце XX в. у ученых появились более совершенные микроскопы, позволяющие достигать увеличения в несколько десятков миллионов раз. Они называются туннельными микроскопами. На рисунке 31 показана фотография поверхности кремния. На ней отчетливо видны отдельные атомы, расположенные на поверхности этого вещества.
Размеры и масса атомов
Современная наука обладает методами, позволяющими определять размеры и массы атомов. Так, например, самый легкий атом — атом водорода. Его масса равна 0,0000000000000000000000000016735 кг. Самым маленьким является атом гелия He. Диаметр этого атома равен приблизительно 0,00000000098 м. Записывать и читать такие числа затруднительно, поэтому обычно их представляют в более удобном виде: 1,6735·10 −27 кг и 9,8·10 −10 м. Атомы большинства химических элементов по своим размерам значительно больше атома гелия. Самый большой из них — атом элемента франция Fr. Его диаметр в 7 раз больше диаметра атома гелия (рис. 32).
Еще больше различаются атомы разных элементов по массе. Масса атома обозначается символом ma и выражается в единицах массы СИ (кг). Так, например, масса атома углерода равна: ma(С) = 19,94·10 −27 кг, а атома кислорода — ma(О) = 26,56·10 −27 кг. Масса атома самого тяжелого из существующих на Земле элементов — урана U — почти в 237 раз больше массы атома водорода.
Атомная единица массы
Пользоваться такими маленькими величинами масс атомов при расчетах неудобно. К тому же, когда в XIX в. начало формироваться атомно- молекулярное учение, ученые еще не представляли реальных размеров и масс атомов. Поэтому на практике вместо истинных масс атомов стали применять их относительные значения. Они рассчитывались по массовым отношениям простых веществ в реакциях друг с другом. Химики предположили, что эти отношения пропорциональны массам соответствующих атомов. Именно так в начале XIX в. Дж. Дальтон ввел понятие относительной атомной массы, приняв за единицу сравнения массу самого легкого атома — водорода.
В настоящее время в качестве такой единицы сравнения используется 1/12 часть массы атома углерода (рис. 33). Она получила название атомной единицы массы (а. е. м.). Ее международное обозначение — u (от английского слова «unit» — единица):
Атомная единица массы — это 1/12 часть массы атома углерода, которая равна 1,66·10 −27 кг.
Относительная атомная масса
Сравнивая средние массы атомов различных элементов с атомной единицей массы, получают значения относительных атомных масс химических элементов.
Относительная атомная масса элемента — это физическая величина, которая показывает, во сколько раз масса атома данного химического элемента больше 1/12 части массы атома углерода.
Относительная атомная масса обозначается символами Ar ( А — первая буква английского слова «atomic» —атомный, r — первая буква английского слова «relative», что значит относительный), следовательно:
где Х — символ данного элемента.
Например, относительная атомная масса водорода:
В таблице Менделеева приведены относительные атомные массы всех элементов. В расчетах при решении задач мы будем пользоваться округленными до целых значениями этих величин (см. урок 1).
Внимание! Очень часто относительную атомную массу называют просто атомной массой. Однако следует отличать атомную массу — величину относительную (например, Ar(О) = 16) — от массы атома — величины, выражаемой в единицах массы — килограммах ( ma(O) = 26,56·10 −27 кг) или атомных единицах массы ( ma(O) = 16· u ).
Пример. Во сколько раз атом ртути тяжелее атома кальция?
Решение. Относительные атомные массы элементов равны: Ar(Hg) = 201 и Ar(Ca) = 40.
Масса атома ртути равна: ma(Hg) = Ar(Hg)·u (кг).
Масса атома кальция равна: ma(Са) = Ar(Са)·u (кг).
Другими словами, отношение масс атомов этих элементов равно отношению их относительных атомных масс. Следовательно, отношение масс атомов ртути и кальция равно:
Ответ: в 5,03 раза.
Краткие выводы урока:
Надеюсь урок 2 «Относительная атомная масса химических элементов» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.
Как узнать относительную атомную массу элемента
Ключевые слова конспекта: атомная единица массы, относительная атомная масса химических элементов, относительная молекулярная масса.
Атомная единица массы — это 1/12 массы атома углерода, масса которого равна 12 а.е.м.
Обратите внимание! На Земле встречаются три разновидности атомов углерода, различающиеся только массой. Такие разновидности атомов одного и того же элемента называют изотопами. В данном случае речь идёт о разновидности, масса атомов которой в атомных единицах массы равна 12.
Разделив массу атома какого-либо химического элемента на 1/12 массы атома углерода, получают величину, которую называют относительной атомной массой и обозначают Аr (А — от слова «атом», r — от латинского слова relativus — относительный).
Например, относительную атомную массу водорода и кислорода вычисляют следующим образом:
Относительная атомная масса элемента (Аr) показывает, во сколько раз масса его атома больше 1/12 массы атома углерода, масса которого равна 12 а. е. м.
Так как первую таблицу относительных атомных масс ряда элементов составил английский учёный Джон Дальтон в 1803 г, то в память о его трудах химики иногда называют атомную единицу массы дальтоном (сокращённо Da). Значение относительной атомной массы каждого химического элемента приведено в периодической таблице Д. И. Менделеева. На практике эти значения обычно округляют до целых чисел.
Относительная молекулярная масса
Массу молекул, так же как массу атомов, принято выражать в атомных единицах массы. Разделив массу молекулы какого-либо вещества на 1/12 массы атома углерода, получают величину, которую называют относительной молекулярной массой вещества.
Относительная молекулярная масса вещества показывает, во сколько раз масса молекулы данного вещества больше 1/12 массы атома углерода, масса которого равна 12 а.е.м.
Относительная молекулярная масса Мr — безразмерная величина. Она складывается из относительных атомных масс элементов, составляющих молекулу, например:
Конец конспекта «Относительная атомная масса. Относительная молекулярная масса».
Относительная атомная и молекулярная массы
Понятия
Для осознания, что такое относительная атомная масса в химии, следует понимать, что абсолютная масса атома слишком мала, чтобы выражать её в граммах, а тем более в килограммах. Поэтому в современной химии за атомную единицу массы (а. е. м.) взята 1/12 часть массы углерода. Относительная атомная масса равна отношению абсолютной массы к 1/12 абсолютной массы углерода. Другими словами относительная масса отражает, во сколько раз масса атома конкретного вещества превышает 1/12 массы атома углерода. Например, относительная масса азота – 14, т.е. атом азота содержит 14 а. е. м. или в 14 раз больше, чем 1/12 часть атома углерода.
Рис. 1. Атомы и молекулы.
Среди всех элементов водород самый лёгкий, его масса равна 1 единице. Самые тяжёлые атомы имеют массу в 300 а. е. м.
Молекулярная масса – значение, показывающее, во сколько раз масса молекулы превышает 1/12 часть массы углерода. Также выражается в а. е. м. Масса молекулы складывается из массы атомов, поэтому для вычисления относительной молекулярной массы необходимо сложить значения масс атомов вещества. Например, относительная молекулярная масса воды равна 18. Это значение складывается из относительных атомных масс двух атомов водорода (2) и одного атома кислорода (16).
Рис. 2. Углерод в периодической таблице.
Как видно, эти два понятия имеют несколько общих характеристик:
Как рассчитать
Чтобы выразить относительную атомную массу математически, следует определить, что 1/2 часть углерода или одна атомная единица массы равна 1,66⋅10 −24 г. Следовательно, формула относительной атомной массы имеет следующий вид:
где ma – абсолютная атомная масса вещества.
Относительная атомная масса химических элементов указана в периодической таблице Менделеева, поэтому её не нужно рассчитывать самостоятельно при решении задач. Относительные атомные массы принято округлять до целых. Исключение составляет хлор. Масса его атомов равна 35,5.
Следует обратить внимание, что при расчёте относительной атомной массы элементов, имеющих изотопы, учитывается их среднее значение. Атомная масса в этом случае высчитывается следующим образом:
где Ar,i – относительная атомная масса изотопов, ni – содержание изотопов в природных смесях.
Например, кислород имеет три изотопа – 16 О, 17 О, 18 О. Их относительная масса равна 15,995, 16,999, 17,999, а их содержание в природных смесях – 99,759 %, 0,037 %, 0,204 % соответственно. Поделив проценты на 100 и подставив значения, получим:
Обратившись к периодической таблице, легко найти это значение в клетке кислорода.
Рис. 3. Таблица Менделеева.
Относительная молекулярная масса – сумма масс атомов вещества:
При определении значения относительной молекулярной массы учитываются индексы символов. Например, вычисление массы H2CO3 выглядит следующим образом:
Зная относительную молекулярную массу, можно вычислить относительную плотность одного газа по второму, т.е. определить, во сколько раз одно газообразное вещество тяжелее второго. Для этого используется уравнение D(y)x = Mr(х) / Mr(y).
Что мы узнали?
Из урока 8 класса узнали об относительной атомной и молекулярной массе. За единицу относительной атомной массы принята 1/12 часть массы углерода, равная 1,66⋅10 −24 г. Для вычисления массы необходимо абсолютную атомную массу вещества разделить на атомную единицу массы (а. е. м.). Значение относительной атомной массы указано в периодической системе Менделеева в каждой клетке элемента. Молекулярная масса вещества складывается из суммы относительных атомных масс элементов.
ОТНОСИТЕЛЬНАЯ АТОМНАЯ МАССА
ОТНОСИТЕЛЬНАЯ АТОМНАЯ МАССА. Английский ученый Джон Дальтон (1766–1844) на своих лекциях демонстрировал студентам выточенные из дерева модели атомов, показывая, как они могут соединяться, образуя различные вещества. Когда одного из студентов спросили, что такое атомы, он ответил: «Атомы – это раскрашенные в разные цвета деревянные кубики, которые изобрел мистер Дальтон».
Конечно, Дальтон прославился не своими «кубиками» и даже не тем, что в двенадцатилетнем возрасте стал школьным учителем. С именем Дальтона связано возникновение современной атомистической теории. Впервые в истории науки он задумался о возможности измерения масс атомов и предложил для этого конкретные способы. Понятно, что непосредственно взвесить атомы невозможно. Дальтон рассуждал только о «соотношении весов мельчайших частиц газообразных и других тел», то есть об относительных их массах. И поныне, хотя масса любого атома в точности известна, ее никогда не выражают в граммах, так как это исключительно неудобно. Например, масса атома урана – самого тяжелого из существующих на Земле элементов – составляет всего 3,952·10 –22 г. Поэтому массу атомов выражают в относительных единицах, показывающих, во сколько раз масса атомов данного элемента больше массы атомов другого элемента, принятого в качестве стандарта. Фактически это и есть «соотношение весов» по Дальтону, т.е. относительная атомная масса.
В качестве единицы массы Дальтон принял массу атома водорода, а для нахождения масс других атомов он использовал найденные разными исследователями процентные составы различных соединений водорода с другими элементами. Так, по данным Лавуазье, в воде содержится 15% водорода и 85% кислорода. Отсюда Дальтон нашел относительную атомную массу кислорода – 5,67 (в предположении, что в воде на один атом водорода приходится один атом кислорода). По данным английского химика Уильяма Остина (1754–1793) о составе аммиака (80% азота и 20% водорода) Дальтон определил относительную атомную массу азота, равную 4 (также в предположении о равном числе атомов водорода и азота в этом соединении). А из данных по анализу некоторых углеводородов Дальтон приписал углероду значение 4,4. В 1803 Дальтон составил первую в мире таблицу относительных атомных масс некоторых элементов. В дальнейшем эта таблица претерпела очень сильные изменения; основные из них произошли еще при жизни Дальтона, что видно из следующей таблицы, в которой приведены данные из учебников, изданных в разные годы, а также в официальном издании ИЮПАК – Международного союза теоретической и прикладной химии (International Union of Pure and Applied Chemistry).
Таблица 1. | |||||
Элемент | Н | Не | С | N | О |
Дальтон, 1803 | 1 | – | 4,5 | 4 | 5,66 |
Бецелиус, 1826 | 1 | – | 12,26 | 14,18 | 16,02 |
Жерар, 1842 | 1 | – | 12 | 14 | 16 |
Менделеев, 1906 | 1,008 | 4,0 | 12,0 | 14,04 | 16,000 |
Бьеррум, 1933 | 1,007 | 4,002 | 12,0 | 14,008 | 16,0000 |
Сиборг, 1945 | 1,008 | 4,003 | 12,010 | 14,008 | 16,000 |
ИЮПАК, 1993 | 1,00794 | 4,002602 | 12,011 | 14,00674 | 15,9994 |
Прежде всего, обращают на себя внимание непривычные атомные массы у Дальтона: они в несколько раз отличаются от современных! Это объясняется двумя причинами. Первая – неточность эксперимента в конце 18 – начале 19 в. Когда Гей-Люссак и Гумбольдт уточнили состав воды (12,6% Н и 87,4% О), Дальтон изменил значение атомной массы кислорода, приняв ее равной 7 (по современным данным в воде 11,1% водорода). По мере совершенствования методов измерения уточнялись атомные массы и многих других элементов. При этом за единицу измерения атомных масс сначала выбирали водород, потом – кислород, а в настоящее время – углерод.
Вторая причина более серьезная. Дальтон не знал, в каком соотношении находятся атомы разных элементов в различных соединениях, поэтому он принял наиболее простую гипотезу о соотношении 1:1. Так считали многие химики, пока не были надежно установлены и приняты химиками правильные формулы для состава воды (Н2О) и аммиака (NH3), многих других соединений. Для установления формул газообразных веществ использовался закон Авогадро, позволяющий определять относительную молекулярную массу веществ. Для жидких и твердых веществ использовали другие способы (см. МОЛЕКУЛЯРНОЙ МАССЫ ОПРЕДЕЛЕНИЕ). Особенно просто было устанавливать формулы соединений элементов переменной валентности, например, хлорида железа. Относительная атомная масса хлора уже была известна из анализа ряда его газообразных соединений. Теперь, если принять, что в хлориде железа число атомов металла и хлора одинаково, то для одного хлорида относительная атомная масса железа получалась равной 27,92, а для другого – 18,62. Отсюда следовало, что формулы хлоридов FeCl2 и FeCl3, и Ar(Fe) = 55,85 (среднее из двух анализов). Вторая возможность – формулы FeCl4 и FeCl6, и Ar(Fe) = 111,7 – была исключена как маловероятная. Относительные атомные массы твердых веществ помогало находить эмпирическое правило, сформулированное в 1819 французскими учеными П.И.Дюлонгом и А.Т.Пти: произведение атомной массы на теплоемкость – величина постоянная. Особенно хорошо правило Дюлонга – Пти выполнялось для металлов, что позволило, например, Берцелиусу уточнить и исправить атомные массы некоторых из них.
При рассмотрении относительных атомных масс химических элементов, приводящихся в периодической таблице, можно заметить, что для разных элементов они даются с разной точностью. Например, для лития – с 4 значащими цифрами, для серы и углерода – с 5, для водорода – с 6, для гелия и азота – с 7, для фтора – с 8. Отчего такая несправедливость?
Оказывается, точность, с которой определяется относительная атомная масса данного элемента, зависит не столько от точности измерений, сколько от «природных» факторов, не зависящих от человека. Они связаны с непостоянством изотопного состава данного элемента: в разных образцах соотношение изотопов не вполне одинаковое. Например, при испарении воды молекулы с легкими изотопами (см. ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ) водорода переходят в газовую фазу чуть быстрее, чем молекулы тяжелой воды, содержащие изотопы 2 Н. В результате в водяных парах изотопа 2 Н немного меньше, чем в жидкой воде. Многие организмы также разделяют изотопы легких элементов (для них разница в массах более существенна, чем для тяжелых элементов). Так, при фотосинтезе растения отдают предпочтение легкому изотопу 12 С. Поэтому в живых организмах, а также произошедших от них нефти и угле содержание тяжелого изотопа 13 С понижено, а в углекислом газе и образовавшемся из него карбонатах, наоборот, – повышено. Микроорганизмы, восстанавливающие сульфаты, также накапливают легкий изотоп 32 S, поэтому в осадочных сульфатах его больше. В «остатках» же, не усвоенных бактериями, доля тяжелого изотопа 34 S больше. (Кстати, анализируя соотношение изотопов серы, геологи могут отличить осадочный источник серы от магматического. А по соотношению изотопов 12 С и 13 С можно даже отличить тростниковый сахар от свекловичного!)
Итак, для многих элементов приводить очень точные значения атомных масс просто не имеет смысла, поскольку они немного меняются от одного образца к другому. По точности, с какой приводятся атомные массы, можно сразу сказать, происходит ли в природе «разделение изотопов» данного элемента и насколько сильно. А вот, например, для фтора атомная масса приводится с очень высокой точностью; значит, атомная масса фтора в любом его земном источнике постоянна. И это неудивительно: фтор относится к так называемым элементам-одиночкам, которые в природе представлены одним-единственным нуклидом.
В периодической таблице массы некоторых элементов стоят в скобках. Это относится главным образом к актинидам, стоящим после урана (так называемые трансурановые элементы), к еще более тяжелым элементам 7-го периода, а также к нескольким более легким; среди них технеций, прометий, полоний, астат, радон, франций. Если сравнить таблицы элементов, напечатанные в разные годы, то окажется, что эти числа время от времени меняются, иногда в течение всего нескольких лет. Некоторые примеры приведены в таблице.
Причина изменений в таблицах заключается в том, что указанные элементы радиоактивны, у них нет ни одного стабильного изотопа. В таких случаях принято приводить либо относительную атомную массу наиболее долгоживущего нуклида (например, для радия), либо массовые числа; последние приводятся в скобках. Когда открывают новый радиоактивный элемент, то получают вначале лишь один из многих его изотопов – конкретный нуклид с определенным числом нейтронов. Исходя из теоретических представлений, а также экспериментальных возможностей, стараются получить нуклид нового элемента с достаточным временем жизни (с таким нуклидом легче работать), однако удавалось это «с первого захода» не всегда. Как правило, при дальнейших исследованиях выяснялось, что существуют и могут быть синтезированы новые нуклиды с бoльшим временем жизни, и тогда проставленное в Периодической таблице элементов Д.И.Менделеева число надо было заменять. Сопоставим массовые числа некоторых трансуранов, а также прометия, взятые из книг, изданных в разные годы. В скобках в таблице приведены современные данные для периодов полураспада. В старых изданиях вместо принятых в настоящее время символов элементов 104 и 105 (Rf – резерфордий и Db – дубний) фигурировали Ku – курчатовий и Ns – нильсборий.
Таблица 2. | ||||
Элемент Z | Год издания | |||
1951 | 1958 | 1983 | 2000 | |
Pm 61 | 147 (2,62 года) | 145 (18 лет) | 145 | 145 |
Pu 94 | 239 (24100 лет) | 242 (3,76 . 10 5 лет) | 244 (8,2 . 10 7 лет) | 244 |
Am 95 | 241 (432 года) | 243 (7370 лет) | 243 | 243 |
Cm 96 | 242 (163 сут) | 245 (8500 лет) | 247 (1,58 . 10 7 лет) | 247 |
Bk 97 | 243 (4,5 час) | 249 (330 сут) | 247 (1400 лет) | 247 |
Cf 98 | 245 (44 мин) | 251 (900 лет) | 251 | 251 |
Es 99 | – | 254 (276 сут) | 254 | 252 (472 сут) |
Fm 100 | – | 253 (3 сут) | 257 (100,5 сут) | 257 |
Md 101 | – | 256 (76 мин) | 258 (52 сут) | 258 |
No 102 | – | – | 255 (3,1 мин) | 259 (58 мин) |
Lr 103 | – | – | 256 (26 сек) | 262 (3,6 час) |
Rf 104 | – | – | 261 (78 сек) | 261 |
Db 105 | – | – | 261 (1,8 сек) | 262 (34 сек) |
Как видно из таблицы, все приведенные в ней элементы радиоактивные, их периоды полураспада намного меньше возраста Земли (несколько млрд. лет), поэтому в природе этих элементов нет и получены они искусственно. По мере совершенствования техники эксперимента (синтез новых изотопов и измерение времени их жизни) иногда удавалось найти нуклиды, живущие в тысячи и даже миллионы раз дольше известных до этого. Например, когда в 1944 на циклотроне в Беркли были поставлены первые опыты по синтезу элемента № 96 (впоследствии его назвали кюрием), то единственная имевшаяся тогда возможность получения этого элемента заключалась в облучении a-частицами ядер плутония-239: 239 Pu + 4 He ® 242 Cm + 1 n. Полученный нуклид нового элемента имел период полураспада около полугода; он оказался очень удобным компактным источником энергии, и позднее его использовали с этой целью, например, на американских космических станциях «Сервейор». В настоящее время получен кюрий-247, который имеет период полураспада 16 млн. лет, что в 36 млн. раз превышает время жизни первого известного нуклида этого элемента. Так что изменения, вносимые время от времени в таблицу элементов, могут быть связаны не только с открытием новых химических элементов!
В заключение – о том, как узнали, в каком соотношении присутствуют в элементе разные изотопы? Например, о том, что в природном хлоре на долю 35 Cl приходится 75,77% (остальное – изотоп 37 Cl)? В данном случае, когда в природном элементе всего два изотопа, решить задачу поможет такая аналогия.
В 1982 в результате инфляции стоимость меди, из которых чеканились одноцентовые монеты США, превысила номинал монеты. Поэтому с этого года монеты делают из более дешевого цинка и лишь сверху покрывают тонким слоем меди. При этом содержание дорогой меди в монете снизилось с 95 до 2,5%, а масса – с 3,1 до 2,5 г. Через несколько лет, когда в обращении находилась смесь монет двух типов, преподаватели химии сообразили, что эти монеты (на глаз они почти неразличимы) – прекрасное пособие для их «изотопного анализа», либо по массе, либо по числу монет каждого типа (аналогия массовой или мольной доли изотопов в смеси). Будем рассуждать так: пусть у нас имеется 210 монет, среди которых есть и легкие, и тяжелые (это соотношение не зависит от числа монет, если их достаточно много). Пусть также общая масса всех монет равна 540 г. Если бы все эти монеты были «легкой разновидности», то общая их масса была бы равна 525 г, что на 15 г меньше действительной. Почему так? Потому что не все монеты легкие: есть среди них и тяжелые. Замена одной легкой монеты на тяжелую приводит к увеличению общей массы на 0,6 г. Нам же надо увеличить массу на 40 г. Следовательно, легких монет имеется 15/0,6 = 25. Таким образом, в смеси 25/210 = 0,119 или 11,9% легких монет. (Конечно, со временем «изотопное соотношение» монет разного типа будет меняться: легких будет все больше, тяжелых – все меньше. Для элементов же соотношение изотопов в природе постоянно.)
Точно так же и в случае изотопов хлора или меди: известна средняя атомная масса меди – 63,546 (ее определили химики, анализируя различные соединения меди), а также массы легкого 64 Cu и тяжелого 65 Cu изотопов меди (эти массы определили физики, используя свои, физические, методы). Если элемент содержит более двух стабильных изотопов, их соотношение определяется другими методами.
Наши монетные дворы – Московский и Санкт-Петербургский тоже, оказывается, чеканили разные «изотопные разновидности» монет. Причина та же – подорожание металла. Так, 10- и 20-рублевые монеты в 1992 чеканились из немагнитного медно-никелевого сплава, а в 1993 – из более дешевой стали, и эти монеты притягиваются магнитом; по внешнему виду они практически не различаются (кстати, часть монет этих годов отчеканены «не в том» сплаве, такие монеты очень редкие, а некоторые стоят дороже золота!). В 1993 чеканились также 50-рублевые монеты из медного сплава, и в том же году (гиперинфляция!) – из стали, покрытой латунью. Правда, массы наших «изотопных разновидностей» монет отличаются не так сильно, как у американских. Тем не менее, точное взвешивание кучи монет дает возможность рассчитать, сколько в них монет каждого сорта – по массе, либо по числу монет, если подсчитано общее их число.