как узнать площадь треугольника равнобедренного 4 класс
Как посчитать площадь равнобедренного треугольника
Онлайн калькулятор
Чтобы вычислить площадь равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):
Введите их в соответствующие поля и узнаете площадь равнобедренного треугольника (S).
Как посчитать площадь равнобедренного треугольника зная длину основания и высоту
Какова площадь равнобедренного треугольника (S) если известны длина основания (b) и высота (h)?
Формула
Пример
Если основание b = 5 см, а высота h = 10 см, то:
S = ½⋅5⋅10 = 50/2 = 25 см 2
Как посчитать площадь равнобедренного треугольника зная длину двух равных сторон (a) и угол между ними (β)
Какова площадь равнобедренного треугольника (S) если известны длина двух равных сторон (a) и угол между ними (β)?
Формула
Пример
Если сторона а = 10 см, а ∠β = 30°, то:
S = ½⋅10 2 ⋅sin30° = ½ ⋅100⋅0.5= 50/2 = 25 см 2
Как посчитать площадь равнобедренного треугольника зная длину двух равных сторон (a) и угол между стороной и основанием (α)
Какова площадь равнобедренного треугольника (S) если известны длина двух равных сторон (a) и угол между стороной и основанием (α)?
Формула
Пример
Если сторона а = 10 см, а ∠α = 75°, то:
S = ½⋅10 2 ⋅sin(180-2⋅75)° = ½ ⋅100⋅0.5 = 50/2 = 25 см 2
Как посчитать площадь равнобедренного треугольника зная длину двух равных сторон (a) и длину основания (b)
Какова площадь равнобедренного треугольника (S) если известны длина двух равных сторон (a) и длина основания (b)?
Формула
Пример
Если сторона а = 10 см, а основание b = 5, то:
Как найти площадь треугольника – все способы от самых простых до самых сложных
Зависит от того, какой треугольник.
Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.
Если треугольник прямоугольный
То есть один из его углов равен 90 градусам.
Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.
Если он равнобедренный
То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.
Если он равносторонний
То есть все три стороны равны. Ваши действия такие:
Если известна сторона и высота
Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.
Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.
Если известны две стороны и градус угла между ними
Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:
Если известны длины трех сторон
Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.
Если известны три стороны и радиус описанной окружности
Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.
Если известны три стороны и радиус вписанной окружности
Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.
Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.
Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.
Как найти площадь треугольника
На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.
Треугольник – это многоугольник с тремя сторонами.
По формуле Герона
Формула Герона для нахождения площади треугольника:
Через основание и высоту
Формула нахождения площади треугольника с помощью половины его основания и высоту:
Через две стороны и угол
Формула нахождения площади треугольника через две стороны и угол между ними:
Через сторону и два прилежащих угла
Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:
Площадь прямоугольного треугольника
Формула нахождения площади прямоугольного треугольника через катеты:
Площадь равнобедренного треугольника через стороны
Формула нахождения площади равнобедренного треугольника через две стороны:
Площадь равнобедренного треугольника через основание и угол
Формула нахождения площади равнобедренного треугольника через основание и угол:
Площадь равностороннего треугольника через стороны
Формула нахождения площади равностороннего треугольника через сторону:
Площадь равностороннего треугольника через высоту
Формула нахождения площади равностороннего треугольника через высоту:
Площадь равностороннего треугольника через радиус вписанной окружности
Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:
Площадь равностороннего треугольника через радиус описанной окружности
Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:
Площадь треугольника через радиус описанной окружности и три стороны
Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:
Площадь треугольника через радиус вписанной окружности и три стороны
Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:
Площадь треугольника
Теперь вам не нужно тратить время на долгие вычисления, прежде чем вы сможете узнать площадь треугольника. Зная методы расчета, используемые для расчета площади треугольника, вы легко сможете это сделать самостоятельно. Действительно, всегда лучше знать формулы площади треугольника. Треугольники могут быть разными и вы это знаете, но как найти площадь треугольника если вам практически ничего неизвестно о треугольнике? И что нужно знать из размеров треугольника, чтобы найти его площадь. Давайте разбираться. При этом тема не так проста как кажется на первый взгляд, наверное, поэтому задачи нахождения площади треугольника есть и в ОГЭ и в ЕГЭ по математике.
Что такое треугольник
Треугольник — это геометрическая фигура. По определению, это многоугольник, имеющий три стороны. Следовательно, треугольник также должен иметь три угла.
Сумма трех углов треугольника должна быть равна 180°.
Чтобы иметь возможность вычислить площадь треугольника, мы должны сначала знать меру его основания, а также высоту. Основание треугольника представляет одну из его сторон. Высота, с другой стороны, представляет собой каждую из трех прямых линий, которые проходят через одну из вершин треугольника и перпендикулярны стороне, лежащей напротив принятой вершины (то есть перпендикулярно основанию).
Прежде всего, помните, что треугольник состоит из трех сторон и трех углов. Это значит, что у него должно быть три вершины. Треугольник, вершинами которого являются A, B и C, может быть представлен как: ΔABC. Существуют разные виды треугольников. Они могут быть классифицированы двумя различными способами: либо по свойству его сторон, либо по свойству его углов.
Различные типы треугольников в зависимости от длины их сторон
Разносторонний треугольник
Мы узнаем разносторонний треугольник по трем сторонам, которые имеют разную длину. Эта треугольная форма может быть построена только с тремя разными углами. Кроме того, один из них может быть прямым углом (или углом 90 °). В общем, название «произвольный треугольник» используется для разностороннего треугольника.
Равнобедренный треугольник
Мы говорим, что треугольник равнобедренный, если он имеет две стороны одинаковой длины и два равных угла при основании. Равнобедренный треугольник также можно узнать по тому факту, что его высота представляет его ось симметрии, его медиану и биссектрису.
Прямоугольный треугольник
Прямоугольный треугольник обязательно имеет прямой угол. Другими словами, сумма двух других его углов должна быть равна 90°. Прямоугольный треугольник также имеет гипотенузу.
Это противоположная сторона вершине с прямым углом. Прямой треугольник может быть разносторонним (или любым), если его три стороны имеют разную длину.
Кроме того, он может быть равнобедренным в том случае, если он имеет два одинаковых катета.
Равносторонний треугольник
Треугольник называется равносторонним, если он имеет три стороны одинаковой длины. Поэтому все его углы также равны и каждый по 60°. В равностороннем треугольнике любая высота также выступает в качестве медианы и биссектрисы.
Площадь треугольника
Площадь разностороннего треугольника
Вычисляем площадь треугольника без особенностей — все его стороны разные и все углы разные.
Если известны две стороны треугольника и угол между ними, то площадь разностороннего треугольника вычисляется по формуле «площадь треугольника через две стороны и угол между ними»:
Если известны высота в треугольнике и основание, то используется формула площади треугольника через основание и высоту:
Формула Герона определения площади треугольника
Если известны стороны любого треугольника, то его площадь можно определить по формуле Герона.
, где
Площадь равнобедренного треугольника
Площадь треугольника через основание и сторону можно найти, если известны сторона и основания равнобедренного треугольника.
К равнобедренному треугольнику также применима формула площади треугольника через основание, сторону и угол между ними:
Найти площадь равнобедренного треугольника можно также через боковые стороны и угол между ними.
Площадь равнобедренного треугольника через основание и угол между боковыми сторонами:
Площадь прямоугольного треугольника
Приведем формулы площади прямоугольного треугольника. Формула площади прямоугольного треугольника через катет и прилежащий угол:
Площадь прямоугольного треугольника по радиусу вписанной окружности и гипотенузе
Площадь прямоугольного треугольника, если в него вписана окружность:
Площадь равностороннего треугольника
Площадь равностороннего треугольника можно найти через радиус описанной окружности.
Если дан радиус вписанной окружности, то площадь равностороннего треугольника можно найти по формуле:
Площадь равностороннего треугольника, если известна высота треугольника:
Площадь равнобедренного треугольника онлайн
С помощю этого онлайн калькулятора можно найти площадь равнобедренного треугольника. Для нахождения площади равнобедренного треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Площадь равнобедненного треугольника по основанию и стороне
Пусть в равнобедренном треугольнике известны основание a=BC и сторона b=AC (AC=BC) (Рис.1):
Найдем площадь треугольника. Проведем высоту h=AH. Поскольку в равнобедренном треугольнике высота являетcя также биссектрисой и медианой, то:
Применим теорему Пифагора для прямоугольного треугольника AHC:
Площадь треугольника по основанию и высоте имеет следующий вид:
Подставляя (2) в (3), получим:
Пример 1. Основание равнобедренного треугольника равна a=4.5, а боковая сторона − b=7. Найти площадь треугольника.
Решение. Для вычисления площади треугольника воспользуемся формулой (4). Подставляя значение a=5 и b=7 в (4), получим:
Ответ:
Площадь равнобедненного треугольника по боковым сторонам и углу между ними
Пусть в равнобедренном треугольнике известны боковые стороны b=c и угол между ними α (Рис.2).
Плошадь треугольника по сторонам и углу между ними вычисляется с помощью следующей формулы (см. теорему 2 статьи Площадь треугольника онлайн):
Учитывая, что b=c, получим:
Пример 2. Боковые стороны равнобедненного треугольника равны b=c=12, а угол между ними равна α=67°. Найти площадь треугольника.
Решение. Для вычисления площади треугольника воспользуемся формулой (5). Подставляя значения b=12 и α=67° в (5), получим:
Ответ:
Площадь равнобедненного треугольника по основанию и прилежащему углу
Пусть в равнобедренном треугольнике известны основание a и прилежащий угол γ (Рис.3):
Найдем площадь треугольника. Проведем высоту AH. Для прямоугольного треугольника AHC можно записать:
Формулу вычисления площади по основанию и прилежащему углу получим подставляя (6) в (3):
Пример 3. Основание равнобедненного треугольника равна a=25.4, а прилежащий угол равен γ=27°. Найти площадь треугольника.
Решение. Для вычисления площади треугольника воспользуемся формулой (7). Подставляя значения a=25.4 и α=27° в (7), получим:
Ответ:
Площадь равнобедненного треугольника по основанию и противолежащему углу
Пусть в равнобедренном треугольнике известны основание a и противолежащий угол α=∠BAC (Рис.4):
Найдем площадь треугольника. Проведем высоту AH. Для прямоугольного треугольника AHC можно записать:
Формулу вычисления площади по основанию и противолежащему углу получим подставляя (8) в (3):
Пример 4. Основание равнобедненного треугольника равна a=17, а прилежащий угол равен γ=21.4°. Найти площадь треугольника.
Решение. Для вычисления площади треугольника воспользуемся формулой (9). Подставляя значения a=17 и α=21.4° в (9), получим:
Ответ:
Площадь равнобедненного треугольника по основанию и высоте
Пусть в равнобедренном треугольнике известны основание a и высота h (Рис.5):
Формула для вычисления площади треугольника имеет вид (3):
Пример 5. Основание равнобедненного треугольника равна a=18, а высота равна h=31. Найти площадь треугольника.
Решение. Для вычисления площади треугольника воспользуемся формулой (10). Подставляя значения a=18 и h=31 в (10), получим:
Ответ: