как узнать пусковой ток двигателя

Как посчитать пусковой ток электродвигателя

Величина пускового тока, необходимого для приведения двигателя в действие, существенно (иногда в 8-10 раз) превышает показатели тока, который подается для работы в нормальном режиме. Результатом резкого роста потребления энергии становится падение напряжения в питающих электросетях, что может повлечь за собой:

Свести отрицательное воздействие к минимуму возможно, используя дополнительные устройства. Параметры вспомогательного оборудования определяют, исходя из значения пускового тока для данной модели двигателя.

Как посчитать пусковой ток электродвигателя

Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя). Для этого предусмотрены следующие формулы (все необходимые данные есть в техпаспорте к оборудованию):

Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.

Способы уменьшения пускового тока

Проблема снижения пускового тока и более плавной подачи напряжения решается с помощью специального оборудования:

Грамотный подход к расчету значения пускового тока для электрического двигателя позволит вам получить точные результаты и подобрать наиболее эффективные средства защиты линии включения.

Источник

Как рассчитать пусковой ток двигателя

Пусковые токи асинхронных электродвигателей

Подписка на рассылку

Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.

как узнать пусковой ток двигателя. 06. как узнать пусковой ток двигателя фото. как узнать пусковой ток двигателя-06. картинка как узнать пусковой ток двигателя. картинка 06.Рисунок 1. Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.

Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения). Поэтому при подключении и наладке двигателей переменного тока (наиболее распространенных в промышленности) всегда стоит задача минимизировать значения пусковых токов, а также повысить плавность пуска двигателя за счет применения специального дополнительного оборудования. Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).

Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи. Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты. Также пусковой ток асинхронного электродвигателя можно уменьшить за счет внедрения внешнего сопротивления в обмотку ротора.

Расчет пускового тока асинхронного электродвигателя

как узнать пусковой ток двигателя. 07. как узнать пусковой ток двигателя фото. как узнать пусковой ток двигателя-07. картинка как узнать пусковой ток двигателя. картинка 07.Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).

Расчет пускового тока электродвигателя осуществляется в несколько этапов:

Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.

Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.

Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.

Какой ток потребляет двигатель из сети при пуске и работе

В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.

Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток. При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:

I н = P н/ ( √3 U н х η х с osφ).

где P н — номинальная мощность двигателя в кВт, U н — напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) — паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также — Какие паспортные данные указываются на щитке асинхронного двигателя.

как узнать пусковой ток двигателя. 1420979500 21. как узнать пусковой ток двигателя фото. как узнать пусковой ток двигателя-1420979500 21. картинка как узнать пусковой ток двигателя. картинка 1420979500 21.

Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.

Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).

В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток. который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).

как узнать пусковой ток двигателя. 1420979529 12. как узнать пусковой ток двигателя фото. как узнать пусковой ток двигателя-1420979529 12. картинка как узнать пусковой ток двигателя. картинка 1420979529 12.

Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/ I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.

Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.

Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей

Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).

Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.

В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.

Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.

как узнать пусковой ток двигателя. 1420979535 13. как узнать пусковой ток двигателя фото. как узнать пусковой ток двигателя-1420979535 13. картинка как узнать пусковой ток двигателя. картинка 1420979535 13.

Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник

Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя

В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры). Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.

Статьи и схемы

Полезное для электрика

Пусковой ток двигателя определяется как

где — кратность пускового тока по отношению к номинальному.

Сечение проводов и кабелей до 1 кВ выбираем исходя из условий:

1) по условию нагрева от протекаемого тока

где — поправочный коэффициент на условия прокладки;

2) по условию соответствия аппарату МТЗ (максимальной токовой защиты), установленного в начале линии

где — номинальный ток защитного аппарата, А; — кратность длительного допустимого тока провода по отношению к току срабатывания защиты.

При определении количества проводов, прокладываемых в одной трубе, или жил многожильного проводника, нулевой рабочий проводник, а также заземляющие и нулевые защитные проводники в расчёт не принимаем. Для цеховых электрических сетей принимаем провода и кабели с алюминиевыми жилами, тогда по механической прочности минимальные сечения алюминиевых жил проводов и кабелей внутри помещений не менее 4мм 2 при прокладке на изоляторах, 2,5мм 2 ¾ при других способах прокладки. Проводники с медными жилами применяем во взрывоопасных помещениях классов В1 и В1а, а также в силовых цепях крановых установок. Сечение нулевого и заземляющего провода принимаем равным или большим половины фазного сечения, но не меньше чем того требует механическая прочность.

Приведем пример выбора электродвигателей, пусковых и защитных аппаратов электропривода горизонтально-расточного станка, состоящего из трех двигателей.

1) АИР132М4¾ P=11,0 кВт, h=87,5 %, cosj=0,87, Кп =7,5;

2) АИР112М4¾ Р=5,5 кВт, h=87,5 %, cosj=0,88, Кп =7;

3) АИР80В4¾ Р=1,5 кВт, h=78 %, cosj=0,83, Кп =5,5;

Номинальные токи двигателей по условию (2.10):

Для них по (2.1) выбираем магнитные пускатели:

Согласно (2.2) выберем тепловое реле для первого двигателя

Выбираем тепловое реле типа РТЛ-206104 со средним значением тока теплового реле Iср.т.р. = 27,5 А и номинальным током теплового реле Iном..р. = 80 А.

Для второго электродвигателя

Выбираем тепловое реле типа РТЛ-101604 со средним значением тока теплового реле Iср.т.р. = 12 А и номинальным током теплового реле Iном..р. = 25 А.

Для третьего электродвигателя

Выбираем тепловое реле типа РТЛ-101604 со средним значением тока теплового реле Iср.т.р. =5 А и номинальным током теплового реле Iном..р. = 25 А.

Чтобы определить расчетный ток станка в целом, используем метод определения электрических нагрузок с помощью коэффициента расчетной нагрузки, который будет подробнее изложен далее.

Установленная мощность станка:

Эффективное число электроприемников

Тогда расчетная мощность станка

По условию (3.2.6) выбираем автоматический выключатель в цепи питания:

Для электропривода с одним двигателем расчёт аналогичен трехдвигательному электроприводу, исключение лишь составляет расчётный ток, который принимаем равным номинальному току двигателя. Все расчеты сводятся в таблицы 3.2.3, 3.2.4, 3.2.5 и 3.2.6.

Таблица 3.2.3- Выбор магнитных пускателей и тепловых реле

Источник

Чем измерить пусковой ток электродвигателя

Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:
Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

Расчет силы тока по мощности и напряжению онлайн

Содержание

Расчёт силы тока онлайн калькулятор

Онлайн калькулятор производит расчёт по нормируемому напряжению, если напряжение в Вашей местности отличается от нормальных значений, т.е. имеются значительные просадки напряжения, советуем Вам воспользоваться формулами приведёнными ниже.

Данные формулы помогут Вам произвести более точный расчёт для Вашей сети. Обращаем Ваше внимание, что формулы для расчёта тока в сети 230 В и в сети 400 В имеют различия. Для получения более точных значений советуем использовать значения напряжения полученные путём измерения действующей величины мультиметром.

Расчёт силы тока по мощности и напряжению для однофазной сети:

P— мощность потребителя, Вт;

U— напряжение в сети, В;

cosφ — коэффициент мощности (от 0 до 1);

Расчёт силы тока по мощности и напряжению для трёхфазной сети:

P— мощность потребителя, Вт;

U— напряжение в сети, В;

cosφ — коэффициент мощности (от 0 до 1);

Коэффициент мощности cosφ определение, теория.

Полная мощность прибора состоит из активной и реактивной составляющей (активной и реактивной мощности). Активная составляющая совершает полезную работу, то есть использует электрическую энергию и полностью преобразует в другой необходимый вид энергии. Существуют отдельные приборы, которые в основном работают на данной составляющей, это к примеру обогреватели, электропечи, электроплиты, утюги, лампочки накаливания и т.п. У данных приборов cosφ будет максимально близок к максимальному значению от 0,95 до 1.

Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

Таблица множителей для пусковых токов насосов Grundfos SP

В таблице дана зависимость рабочего In тока в амперах и множителя для пускового тока Ist/In от мощности P2 для однофазных и трехфазных двигателей Grundfos линейки SP. Действующее время разгона — 0.1 секунды.

P2 kWtIn, A (1×230)Ist/In (1×230)In, A (3×400)Ist/In (3×400)
0.373.953.41.403.7
0.555.803.52.203.5
0.757.453.62.304.7
1.17.304.33.404.6
1.510.23.94.205.0
2.214.04.45.504,7

Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Пример возможности пуска электродвигателя 380 В

Требуется проверить возможность пуска электродвигателя типа 4А250М2 У3 мощностью 90 кВт. От шин 6 кВ подстанции 2РП-1 питается подстанция с трансформаторами типа ТМ мощностью 320 кВА. От подстанции 2РП-1 до трансформаторов ТМ-6/0,4 кВ с установленным ответвлением 0%, проложен кабель марки ААБ сечением 3х70 мм2, длина линии составляет 850 м. К шинам РУ-0,4 кВ присоединен кабелем марки ААБ сечением 3х95 мм2, длиной 80 м двигатель типа 4А250М2 У3.

как узнать пусковой ток двигателя. lazy placeholder. как узнать пусковой ток двигателя фото. как узнать пусковой ток двигателя-lazy placeholder. картинка как узнать пусковой ток двигателя. картинка lazy placeholder.

Рис. 1 — Однолинейная схема 0,4 кВ

В момент пуска двигателя 4А250М2 У3 работает подключенный к шинам двигатель 4А250S2 У3 мощностью 75 кВт с напряжением на зажимах 365 В. Напряжение на шинах 0,4 кВ при пуске двигателя равно Uш = 380 В.

1. Определяем длительно допустимый ток двигателя Д1:

2. Определяем пусковой ток двигателя Д1:

где: Kпуск = 7,5 – кратность пускового тока, согласно паспорта на двигатель;

3. Определяем величину активного и индуктивного сопротивления для алюминиевого кабеля марки ААБ сечением 3х70 мм2 на напряжение 6 кВ от шин подстанции 2РП-1 до трансформатора типа ТМ 320 кВА, значения сопротивлений берем из таблицы 2.5 [Л2.с 48].

как узнать пусковой ток двигателя. lazy placeholder. как узнать пусковой ток двигателя фото. как узнать пусковой ток двигателя-lazy placeholder. картинка как узнать пусковой ток двигателя. картинка lazy placeholder.

Получаем значения сопротивлений Rв = 0,447 Ом/км и Хв = 0,08 Ом/км.

Эти сопротивления необходимо привести к стороне низшего напряжения трансформатора, так как двигатель подключен к сети низшего напряжения. Из таблицы 8 [Л1, с 93] для номинального коэффициента трансформации 6/0,4 кВ и ответвления 0% находим значение n=15.

как узнать пусковой ток двигателя. lazy placeholder. как узнать пусковой ток двигателя фото. как узнать пусковой ток двигателя-lazy placeholder. картинка как узнать пусковой ток двигателя. картинка lazy placeholder.

4. Определяем активное и индуктивное сопротивление кабеля по отношению к сети низшего напряжения по формуле [Л1, с 13]:

5. Определяем сопротивление кабеля длиной 850 м от подстанции 2РП-1 до трансформатора 6/0,4 кВ:

Rс = Rн*L = 0,002*0,85 = 0,0017 Ом;

Хс = Хн*L = 0,000355*0,85 = 0,0003 Ом;

6. Определяем сопротивление трансформатора мощностью 320 кВА, 6/0,4 кВ по таблице 7 [Л1, с 92,93].

как узнать пусковой ток двигателя. lazy placeholder. как узнать пусковой ток двигателя фото. как узнать пусковой ток двигателя-lazy placeholder. картинка как узнать пусковой ток двигателя. картинка lazy placeholder.

7. Определяем сопротивления линии от шин подстанции 2РП-1 до шин низшего напряжения подстанции:

Rш = Rс + Rт = 0,0017 + 0,0097 = 0,0114 Ом;

Хш = Хс + Хт = 0,0003 + 0,0258 = 0,0261 Ом;

8. Определяем сопротивление кабеля длиной 80 м марки ААБ 3х95 мм2 от шин низшего напряжения до зажимов двигателя:

9. Определяем суммарное сопротивление линии от подстанции 2РП-1 до зажимов двигателя:

Rд = Rш + R1 = 0,0114 + 0,026 = 0,0374 Ом;

Пусковой ток.

В паспорте электрического двигателя указывается ток при номинальной нагрузке на валу, он меньше пускового тока. Если отмечено 13,8/8 А, то это значит, что при подсоединении двигателя к сети 220 В и номинальной нагрузке ток двигателя будет равен 13,8 А. При подсоединении к сети 380 В – ток 8 А, таким образом верно равенство мощностей: √3 х 380 х 8 = √3 х 220 х 13,8.

Зная номинальную мощность двигателя определяют его номинальный ток. При включении двигателя в трехфазную распредсеть 380 В номинальный ток рассчитывается следующим образом:

Как замерить пусковой ток двигателя. Пуск асинхронных двигателей

В большинстве случаев асинхронные двигатели включаются прямым включением в сеть. В статорной цепи двигателя замыкаются контакты электромагнитного пускателя, обмотки подключаются к линейному напряжению сети, возникает вращающееся электромагнитное поле, и привод начинает работать.

Конечно, при этом происходит пусковой бросок тока, превышающий номинальное значение в пять-семь раз. И длительность этого броска зависит от продолжительности пуска, то есть от мощности двигателя. Чем больше двигатель, тем большее время требуется ему для разгона и тем длительнее будет воздействие повышенного тока на питающую сеть и статорную обмотку.

Для “слабых” асинхронных электроприводов мощностью не более 3 кВт указанные недостатки прямого включения в сеть не являются критичными. Конечно, имеющим место броском тока нельзя пренебрегать, но даже бытовая сеть переменного тока обычно обладает некоторым резервом по мощности, позволяющим выдержать моментную перегрузку.

Что же касается самого приводного двигателя, то при отсутствии “просадок” напряжения он всегда запустится безо всяких для себя последствий. Поэтому, прямое включение в сеть часто применяется для асинхронных приводов небольших насосных и вентиляторных установок, циркулярных пил, наждаков, металлообрабатывающих станков.

Пуск этих приводов происходит в относительно благоприятных условиях, а двигатели рассчитываются на постоянную работу при соединении статорных обмоток в «звезду» и линейном напряжении 380 вольт (номинальное напряжение 380/220 вольт).

Но когда мощность двигателя исчисляется десятью, 15-ю и более киловаттами, прямое включение в сеть становится просто неприемлемым. Тогда броски пускового тока необходимо ограничивать, поскольку они создают лишнюю нагрузку на сеть и могут вызвать “просадку” напряжения.

Переключение на «треугольник» через несколько секунд после пуска можно организовать при помощи реле времени, или контролируя ток в статорной цепи. Однако, существует одна проблема – при снижении напряжения питания снижается и момент двигателя на валу.

Причем если напряжение было снижено в два раза, то момент понижается в четыре раза – зависимость квадратичная. И это при том, что пусковой момент асинхронных двигателей и без того ограничен в силу особенностей асинхронной механической характеристики.

Поэтому, понижение напряжения и переключение со «звезды» на «треугольник» применяется только в электроприводах, имеющих технологическую возможность запускаться при полном отсутствии нагрузки на валу. Это актуально для гонных двигателей преобразовательных агрегатов, для приводов мощных многопильных станков и тому подобных приводов.

Для реостатного пуска применяются двигатели с фазным ротором, позволяющим включить дополнительные сопротивления в свою цепь. Сопротивления можно выводить и по ступеням, при этом пуск получится более плавным. Реостатное регулирование часто применяют и для изменения скорости привода во время работы.

Но самым эффективным для асинхронного привода является пуск с использованием частотного преобразователя (ПЧ). Изменяя частоту и величину питающего напряжения, преобразователь позволяет асинхронному двигателю запускаться и работать с оптимальными показателями в составе любого привода. При этом совершенно исключаются броски тока, а крутящий момент достигает максимально возможных значений.

Служили безотказно? Тогда эта статья будет для вас полезна.

Одна из основных характеристик бытовых приборов — электрическая мощность на выходе. Она отражает возможность питания подключённой нагрузки. Для правильного выбора стабилизатора напряжения переменного тока, ИБП или генератора нужно знать мощность устройства. Для ее расчета следует подсчитать сумму электрической мощности всех приборов, которые могут быть единовременно подключены.

Одно из основных условий долгой и стабильной работы стабилизатора, генератора и ИБП: мощность техники не должна превышать их возможности по выходной мощности. Лучше, чтобы суммарная электрическая мощность электроприборов, которые функционируют одновременно, была на 20 % меньше выходной мощности питающего прибора. Чем меньше стабилизатор или ИБП работает с перегрузкой, тем дольше он служит.

В расчете суммарной мощности и состоит основная трудность. В паспорте любого устройства указана мощность в кВт. Вроде бы всё просто: нужно сложить мощность приборов. Но в этом кроется основная ошибка. Приборы, в конструкции которых есть электродвигатели, насосы или компрессоры, в момент запуска дают нагрузку на сеть, превышающую номинал в 2-7 раз. Такое явление обусловлено наличием пусковых токов. Это же правило относится к приборам, в состав которых входят инерционные компоненты или элементы, физические свойства которых в момент запуска отличаются от их обычных значений при эксплуатации. Классический пример — изменение сопротивления у обыкновенной лампы накаливания. В конструкции таких ламп есть вольфрамовая нить, при включении электрическое сопротивление вольфрама меньше (нить холодная), чем при работе. Сопротивление увеличивается с ростом температуры, следовательно, при включении лампы её мощность намного больше, чем во время работы. При включении лампы накаливания присутствуют пусковые токи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *