как узнать радиус описанной окружности треугольника
Радиус описанной окружности
Удобно, когда все формулы, по которым можно найти радиус описанной окружности для треугольника, квадрата, многоугольника размещены на одной странице.
Формулы для нахождения радиуса описанной окружности треугольника (верны для треугольника любого вида):
где a, b, c — длины сторон треугольника, α, β, γ — противолежащие этим сторонам углы, S — площадь треугольника.
у остроугольного треугольника — внутри треугольника;
у прямоугольного — на середине гипотенузы;
у тупоугольного — вне треугольника, напротив тупого угла.
Радиус описанной окружности для прямоугольного треугольника
Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы:
Окружность, описанная около многоугольника
Если около многоугольника можно описать окружность, ее центр является точкой пересечения серединных перпендикуляров к сторонам многоугольника.
Радиус описанной около многоугольника окружности находят как радиус окружности, описанной около треугольника. Для этого берут любые три вершины многоугольника.
Например, для пятиугольника ABCDE можно взять любой из треугольников ABC, ABD, ABE, BCD, BCE, CDE, ACD, ACE, ADE, BDE.
Радиус окружности, описанной около правильного многоугольника
Формула радиуса описанной окружности для правильного многоугольника
где a — длина стороны многоугольника, n — количество его сторон.
Частные случаи — правильный треугольник, правильный четырехугольник (то есть квадрат), правильный шестиугольник.
Радиус описанной окружности правильного треугольника
Формула радиуса описанной окружности для правильного треугольника
Если без иррациональности в знаменателе —
У правильного треугольника радиус описанной окружности в два раза больше радиуса вписанной окружности:
Радиус описанной окружности квадрата
Формула радиуса описанной окружности для квадрата
Если без иррациональности в знаменателе —
Радиус описанной окружности правильного шестиугольника
Формула радиуса описанной окружности для правильного шестиугольника
Радиус описанной окружности около треугольника онлайн
С помощю этого онлайн калькулятора можно найти радиус описанной около треугольника окружности. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор |
1. Радиус окружности описанной около треугольника, если известны три стороны треугольника
Пусть известны три стороны a, b, c треугольника. Найдем радиус описанной окружности около треугольника.
Площадь треугольника по трем сторонам a, b, c и радиусу R описанной окружности имеет вид:
Подставляя (2) в (1), получим формулу радиуса описанной окружности около треугольника:
где p вычисляется из формулы (3).
Пример 1. Известны три стороны треугольника: \( \small a=6, \ b=5, \ c=4.5 \). Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (4), где \( \small р \) вычисляется из формулы (3).
Подставим значения a, b, c, p в (1):
Ответ:
2. Радиус окружности описанной около треугольника, если известны сторона a и противолежащий угол A
Пусть известны сторона a и противолежащий угол A. Найдем радиус описанной окружности около треугольника. Из расширенной теоремы синусов имеем:
Пример 2. Сторона треугольника равна: а противолежащий угол \( \small \angle A=35°.\) Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (5). Подставим значения и \( \small \angle A=35° \) в (5):
Ответ:
3. Радиус окружности описанной около треугольника, если известны стороны b и c треугольника и угол между ними A
Пусть известны стороны b и c треугольника и угол между ними A. Найдем радиус описанной окружности около треугольника.
Подставляя (6) в (5), получим требуемую формулу:
Пример 3. Известны две стороны треугольника: и угол между ними: \( \small \angle A=30°. \) Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (7). Подставим значения и \( \small \angle A=30° \) в (7):
Ответ:
4. Радиус окружности описанной около треугольника, если известны сторона треугольника a и прилежащие углы B и C
Пусть известны сторона a треугольника и прилежащие к ней углы B и C. Найдем радиус описанной окружности около треугольника. Как известно, сумма углов треугольника равна 180°. Поэтому легко найти треий угол треугольника: \( \small \angle A=180°- (\angle B+ n\angle C). \) Тогда для нахождения радиуса описанной около треугольника окружности можно воспользоваться формулой (5):
. |
Получили следующую формулу:
Пример 4. Известны сторона треугольника: и прилежащие к ней углы: \( \small \angle B=21°, \;\angle C=34°. \) Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (8). Подставим значения и \( \small \angle B=21°, \;\angle C=34° \) в (8):
Ответ:
Радиус описанной около треугольника окружности
Радиус описанной около треугольника окружности можно найти по одной из двух общих формул.
Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.
Радиус описанной около произвольного треугольника окружности
То есть радиус описанной окружности равен отношению длины стороны треугольника к удвоенному синусу противолежащего этой стороне угла.
В общем виде эту формулу записывают так:
То есть чтобы найти радиус описанной около треугольника окружности, надо произведения длин сторон треугольника разделить на четыре площади треугольника.
Если площадь треугольника находить по формуле Герона
где p — полупериметр,
то получим формулу радиуса описанной около треугольника окружности через длины сторон:
Обе эти формулы можно применить к треугольнику любого вида. Следует только учесть положение центра.
Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.
Центр описанной около тупоугольного треугольника окружности лежит вне треугольника, напротив тупого угла.
Радиус окружности, описанной около прямоугольного треугольника
Формула:
То есть в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.
Обычно гипотенузу обозначают через c (AB=c) и формулу записывают так:
Радиус окружности, описанной около правильного треугольника
Если без иррациональности в знаменателе, то
В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной окружности:
Нахождение радиуса описанной вокруг треугольника окружности
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.
Формулы вычисления радиуса описанной окружности
Произвольный треугольник
Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:
где a, b, c – стороны треугольника, S – его площадь.
Прямоугольный треугольник
Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.
Равносторонний треугольник
Радиус описанной около правильного треугольника окружности вычисляется по формуле:
где a – сторона треугольника.
Примеры задач
Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.
Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:
Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:
Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.
Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:
Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.
Радиус описанной окружности около равностороннего треугольника онлайн
С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника, в том числе радиус окружности около равностороннего треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор |
1. Радиус окружности описанной около равностороннего треугольника, если известна сторона a
Пусть известна сторона a равностороннего треугольника. Найдем радиус описанной окружности около треугольника. На странице Радиус окружности описанной около треугольника вычисляется из формулы:
(1) |
где p вычисляется из формулы:
(2) |
Учитывая, что у нас треугольник равносторонний, т.е. a=b=c, имеем:
Подставляя (3),(4) в (1) и учитывая, что a=b=c, получим:
Пример 1. Известна сторона \( \small a=\frac<7> <2>\) равностороннего треугольника. Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (5).
Подставим значение \( \small a=\frac<7> <2>\) в (5):
Ответ:
2. Радиус окружности описанной около равностороннего треугольника, если известна высота треугольника
Пусть известна высота h равностороннего треугольник (Рис.1):
Найдем радиус описанной окружности около равностороннего треугольника. Из теоремы синусов имеем:
Уситывая, что сумма углов треугольника равна 180° и что у равностороннего треугольника все углы равны, имеем: \( \small \angle A= \angle B=\angle C=60°. \) Тогда из (6) получим:
(7) |
Подставляя (7) в (5), получим:
(8) |
Решение. Для нахождения радиуса окружности описанной около равностороннего треугольника воспользуемся формулой (8). Подставим значения \( \small h=15 \) в (8):
Ответ:
3. Радиус окружности описанной около равностороннего треугольника, если известна площадь треугольника
Пусть известна площадьS равностороннего треугольника. Найдем радиус окружности, описанной около треугольника. На странице Площадь равностороннего треугольника онлайн была выведена формула площади равностороннего треугольника по радиусу описанной окружности:
(9) |
В формуле (9) найдем R:
(10) |
Решение. Для нахождения радиуса окружности описанной около равностороннего треугольника воспользуемся формулой (10). Подставим значения \( \small S=14.5 \) в (10):
Ответ: