как узнать размер кулера на видеокарте
Охлаждение видеокарты — как это работает
Содержание
Содержание
Будь то топовое игровое решение или простая офисная затычка, при работе видеокарта будет неминуемо нагреваться. А перегрев может привести к уменьшению производительности или вовсе к ее поломке. Чтобы исключить такой вариант событий, производители предусмотрели множество разновидностей систем охлаждения видеокарты, которые могут обуздать один из самых горячих компонентов ПК.
Конструктивные особенности
Комплектующим ПК при работе свойственно нагреваться, выделяя при этом немалое количество тепла. Особенно это касается видеокарты, которая наряду с процессором является самым тепловыделяющим элементом системы. Свойственный этим двум деталям «горячий характер» непосредственно отразился на схожих методах их охлаждения. Самый распространенный тип охлаждения реализован по принципу передачи тепла от компонентов радиатору, с которого оно рассеивается с помощью вентиляторов. Такой тип охлаждения имеет несколько видов реализации: с помощью тепловых трубок, испарительных камер или совмещающий эти два вида.
Медные тепловые трубки на примере RTX 2060
Тепловые трубки представляют собой металлические трубки, по которым отводится тепло от чипа. Чаще всего изготавливаются из меди, иногда внешний слой покрыт никелем, придавая изделию благородный вид серебра. Трубки наполняются дистиллированной водой или любыми другими жидкостями, которые имеют низкую температуру кипения. Как правило, они впаяны в подложку системы охлаждения и контактируют с графическим процессором через медное основание. Также они могут иметь непосредственный контакт с чипом в зависимости от модели.
При нагреве жидкость в трубке закипает и превращается в пар. Он перемещается в более холодную область трубки, где конденсируется и образует жидкость. Этот цикл повторяется постоянно. Таким образом, тепло от чипа переносится в верхнюю часть трубки, а большое количество ребер радиатора позволяет увеличить площадь для рассеивания тепла.
Испарительная камера, покрывающая полностью печатную плату на примере RTX 2080
Испарительные камеры являются более эффективным продолжением эволюции тепловых трубок. Они так же используют принцип испарения жидкости в трубке, но с некоторыми нюансами. Камеры реализованы в виде плоских трубок, которые одновременно являются и теплотрубками, и теплосъемником. За счет многослойной и плоской конструкции ускоряются процессы преобразования жидкости в пар, и увеличивается площадь для отвода тепла. В связи с этим тепло рассеивается по конструкции более равномерно, нежели в обычных теплотрубках. Дополнительным охлаждающим элементом выступают ребра радиатора, как и в случае тепловых трубок. Схожий по сути, но с другим принципом реализации метод используется в системах жидкостного охлаждения. Жидкость не испаряется, а циркулирует в замкнутом круге. С помощью насоса-помпы жидкость под давлением забирает тепло от теплосъемника и передает его на радиатор, который рассеивает его за счет своей площади и вентиляторов.
Реализация охлаждения: без вентиляторов, с одним, двумя или тремя
Можно встретить большое количество разных вариаций систем охлаждения видеокарт: без вентилятора, с одним вентилятором, двумя или даже тремя. Аппетиты видеокарт непреклонно растут, а за большим энергопотреблением идет большее тепловыделение, которое нужно как-то отводить. Самым простым решениям видеокарт, которые не имеют мощного чипа, достаточно простого радиатора без вентилятора.
Но если рассматривать даже самые начальные игровые и рабочие версии, то тут уже без вентилятора не обойтись.
Наглядный пример: поставим рядом вентилятор размером 92 мм и 120 мм, какой из них с меньшим шумом отведет большее количество воздуха? Конечно же, более крупная версия. А если их будет сразу несколько? Результат будет еще лучше. Схожий принцип работает и в системах охлаждения. Условные два вентилятора на более низких оборотах смогут отвести тот же объем воздуха, что и один вентилятор на повышенных оборотах, который в свою очередь будет намного шумнее в работе. Но, как в любом правиле, тут есть свои исключения.
Не редки случаи, когда одновентиляторная модель имеет в своем распоряжении несколько тепловых трубок, а версия с двумя вентиляторами — всего одну. В таких случаях выбор далеко не очевиден, и правило «Чем больше вентиляторов, тем лучше» может не работать.
Обилие вариаций с разным количеством вентиляторов и размером системы охлаждения обусловлено большой конкуренцией среди производителей. По сути, производителям достается лишь печатная плата от Nvidia или Amd, и им приходится находить все новые и новые решения, чтобы превзойти конкурентов в плане охлаждения. На вентиляторах появляются различные зазубрины, выемки или меняется форма лопастей — все для большего ускорения воздушного потока и увеличения эффективности охлаждения.
В трехвентиляторных моделях сохраняется тот же принцип работы. Крайние вентиляторы крутятся в одном направлении, а центральный в противоположном.
Как правило, трехвентиляторные системы встречаются в самых прожорливых экземплярах карт. У них есть массивный радиатор, покрывающий всю печатную плату. Хотя вы можете найти мощную систему охлаждения даже в видеокартах из среднего сегмента. Тогда она будет работать абсолютно тихо.
Радиальные и осевые вентиляторы
Турбинная реализация системы охлаждения на примере GTX 1080 TI
Главным компонентом системы охлаждения в виде турбины является один радиальный вентилятор. У него нет привычных больших лопастей, вместо них лопатки спиральной формы. Воздух засасывается внутрь ротора и за счет центробежной силы направляется в выходные отверстия у разъемов видеокарты. Внешний кожух системы охлаждения имеет закрытую форму, являясь своеобразной направляющей для воздушного потока. Холодный воздух засасывается внутрь, проходит через радиатор и выбрасывается прямиком наружу корпуса, не задерживаясь внутри ПК. Модели с турбиной были доступнее, но гораздо шумнее.
Традиционная реализация системы охлаждения на примере 5700 XT
Традиционные осевые вентиляторы используются повсеместно. Они не прихотливы, легко изготавливаются, и их может быть до 2-3 штук в одной видеокарте. Осевые вентиляторы не так капризны к кожуху системы охлаждения и при желании даже могут обходиться и без него. В связи с этим они дают производителям большое поле для экспериментов с охлаждением. Можно поместить массивную систему с множеством ребер радиатора, рассеяв тепло с помощью более крупных вентиляторов в количестве нескольких штук. Подавляющее большинство классических систем охлаждения имеют крупные вырезы или вовсе укороченный кожух. Холодный воздух, поступивший от вентиляторов, попадает на радиатор и рассеивается во всех доступных направлениях. При стандартном расположении видеокарты большая часть воздуха, выходящего из системы охлаждения, остается в корпусе, сталкивается с боковой стенкой и поднимается вверх.
Регулировка оборотов видеокарт и пассивный режим: как работает нынешнее поколение видеокарт
В современных поколениях видеокарт все меньше остается моделей с активной системой охлаждения, то есть с постоянно вращающимися вентиляторами, которые увеличивают обороты при повышении температуры. На смену приходит пассивный режим. Суть в полном отключении вентиляторов при низкой нагрузке на видеокарту или низком энергопотреблении. Это позволяет при бытовых задачах избавиться от шума и достичь почти эталонной тишины при легких задачах ПК.
Включаются вентиляторы только при достижении определенной температуры, в среднем
50 градусов, в зависимости от модели. У такой реализации есть и обратная сторона. При некоторых условиях скачки температуры могут быть волнообразны, что заставляет вентиляторы быстро раскручиваться и останавливаться с большой частотой, издавая при этом паразитные шумы. При таком варианте событий потребуется настройка оборотов вентиляторов. У каждого из крупных брендов есть свой собственный софт для настройки видеокарты. В него входит настройка разгона, оборотов и подсветки, если она имеется. А также отображение главных технических данных модели. Достаточно пару раз поэкспериментировать, выставив в графике нужные сочетания скорости вентилятора/температуры и сохранить приемлемые значения.
Если вас не устраивает комплектный софт вашей видеокарты, можно воспользоваться удобной и распространенной программой MSI Afterburner. Она имеет широкий функционал и является бесплатной. Пассивный режим работы вентиляторов можно и вовсе отключить, настроив постоянную работу вентиляторов, но с низкими оборотами при малой нагрузке.
Все, что необходимо знать о компьютерных вентиляторах
В этой статье я хочу обсудить с вами такую тему, как вентилятор для компьютера. Хотя сегодня жидкостные системы охлаждения и набирают популярность, но для массового рынка они не годятся. А актуальность качественного охлаждения компьютерных комплектующих с ростом их мощности только растет. Воздушное охлаждение компьютерных систем остается и будет оставаться самым надежным и практичным способом.
Кому интересно, могут почитать статью про виды охлаждения ПК, но а мы перейдем к разбору необходимых эксплуатационных характеристик и небольших лайфхаков, которые пригодяться простому пользователю при выборе, покупке и самостоятельной установке компьютерных вентиляторов.
Габариты
Крепление вентиляторов внутри корпуса рассчитано на определенные размеры вертушки – 60, 80, 90/92, 120, 140 и 200 мм. Наиболее ходовым считается размер 120 мм, в некоторых местах так же предусматривается установка 90/92 и/или 140-мм вертушек. Чаще вентиляторы размером 140 и 200-мм крепятся в корпусах нестандартной формы или дизайна. А вот места под установку 60, 80 и 90/92-мм вентиляторов обычно встречаются в старых корпусах образца середины 2000х. Выбирать следует из вариантов, что подходят под место крепления. Причем установка вентиляторов с меньшим размером обычно не вызывает трудностей, а вот варианты крупнее не помещаются физически.
Предпочтительнее рассматривать наиболее крупные диаметры вентиляторов. К примеру, если корпус позволяет установить вертушку на 120 и 140 мм, лучше использовать вариант на 140 мм. Поскольку чем больше диаметр, тем меньше требуется оборотов для создания воздушного потока. Так же меньше акустического шума и выше производительность.
Так же толщина большинства вентиляторов 25 мм, 10 и 15 мм обычно у вертушек в 70 мм или меньше. Встречаются так же и 120-мм вентиляторы с шириной 20 и 15 мм: Deepcool GS120, Noctua NF-A12x15 PWM и NF-A12x15 FLX. Такие варианты уместно приобретать для корпусов с ограниченным пространством.
Как узнать размер кулера для корпуса
Если вы знаете как называется модель вашего корпуса, то вы можете узнать размер кулеров на сайте производителя. Для примера возьмем такой популярный корпус как FRACTAL DESIGN Core 2500.
Если ввести его название в любую поисковую систему, то можно без труда найти официальный сайт производителя.
А уже на сайте производителя можно найти детальную информацию обо всех посадочных местах для корпусных кулеров, а также их размер и расположение.
Но, к сожалению, в большинстве случае данный способ не работает. Чаще всего, корпус был куплен давно и информации о нем в интернете нет либо определить производителя и модель корпуса невозможно. В таких ситуациях нужно самостоятельно измерить посадочное место под кулер и определить подходящую модель. Измерять посадочное место проще всего между центрами крепежных отверстий.
Ниже приводим расстояния между центрами крепежных отверстий для корпусных кулеров популярных размеров.
Расстояние между крепежными отверстиями | Размер кулера |
32 мм | 40×40 мм |
50 мм | 60×60 мм |
71.5 мм | 80×80 мм |
82.5 мм | 92×92 мм |
105 мм | 120×120 мм |
125 мм | 140×140 мм |
154 мм 170 мм | 200×200 мм |
Информация о размерах кулеров взята с сайтов noctua.at и arctic.ac. |
Используя данную таблицу можно без труда определить размер кулера, который нужен для вашего корпуса.
Подключение
Для питания вентиляторов используются четыре варианта подключения:
Подключение вентиляторов. Слева налево: 3 pin, 4pin и Molex.
В подключении 2 pin используются 2 провода «+» и «-». Обычно такой разъем используется для питания вентиляторов внутри блоков питания. Поэтому в продаже вертушки с таким типом подключения встретить тяжело.
Вариант на 3 pin более распространен. Помимо проводов питания имеется так же тахометр для отображения количества оборотов в приложениях, например, Aida64.
Разъем на 4 pin встречается преимущественно в моделях стоимостью выше 8 долларов. Наличие четвертого провода обеспечивает регулировку оборотов в БИОС или в приложениях внутри системы. Такой тип подключения предпочтителен, так как позволяет отрегулировать температуру в оптимальном акустическом диапазоне. А при необходимости поднять обороты, когда понадобится высокая продуваемость корпуса.
Подключение типа Molex использует так же два провода «+» и «-». В сравнении с типом pin, что подключаются исключительно в разъем на материнской плате, molex соединяется с разъемом блока питания. Преимуществ такого разъема – только возможность изменения напряжения: 12, 7 или 5 вольт. Для этого достаточно сменить провода в нужной последовательности.
Тип подшипника
Для вращения вентилятора в центре установлен подшипник. Технология изготовления влияет на ресурс работы и акустический шум. Выделяют три основных типа подшипников:
Подшипник скольжения наиболее технологичный ввиду простоты изготовления и минимального количества деталей. Конструкция содержит втулку с антифрикционным материалом, где вращается цилиндрический вал. Благодаря этому стоимость производства благоприятно сказывается на общей цене вентилятора. Кроме того первые часы работы сопряжены низким акустическим шумом. Как только смазочный материал заканчивается, вентилятор начинает шуметь и выходит из строя. Средняя наработка на отказ до 30 000 часов работы.
Подшипник качения содержит внутреннее и наружное кольцо. Область между кольцами зовется сепаратор, что содержит тела качения – ролики или шарики. Изначальный акустический шум выше, в сравнении с подшипником скольжения ввиду большего числа элементов. С другой стороны шум не нарастает по мере эксплуатации. А благодаря средней наработке на отказ до 100 000 часов, срок службы вентиляторов выше в 2-3 раза больше.
Гидродинамический подшипник работает по принципу подшипника качения, только вместо тел качения под давлением закачивается слой масла. За счет ограничения контакта втулки и вала, снижается износ вращающихся элементов, чем достигается длительная работа на отказ – свыше 150 000. Кроме того отсутствие сильных вибраций и шума вплоть до окончания срока службы. Обычно шум возникает за полгода или меньше, после чего вентилятор выходит из строя. Предпочтительнее выбирать гидродинамический тип подшипника.
Отдельно стоит отметить варианты гидродинамических подшипников с магнитным центрированием. Например, такая технология используется в вентиляторах производства Noctua. Магнитное центрирование позволяет выравнивать ось вращения и исключить биение в момент запуска. Благодаря этому снижается шум и увеличивается продолжительность работы. Поэтому на всю продукцию распространяется гарантия 6 лет, при этом из отзывов владельцев вентиляторы стабильно работают и после 10 лет эксплуатации.
Обороты/шум
В процессе работы вентиляторы издают акустический шум. Доказано, что шум замедляет реакцию человека, а так же вызывает усталость и головную боль. Поэтому длительное нахождение рядом с шумным «ящиком» приведет только к утомляемости и не позволит сосредоточиться на важных делах.
Из личного опыта стоит отметить, что вентиляторы до 20 дБ не слышно в закрытом корпусе со слабой изоляцией шума. До 25 дБ акустический показатель нормальный и с набором из 5-7 вентиляторов в корпусе не сложно отработать за компьютером световой день. До 30 дБ шум достаточно отчетливый и длительная работа за компьютером не комфортна, при условии слабой изоляции в корпусе. Поэтому лучше подбирать вентиляторы в приделах до 26 дБ, а лучше в интервале 20-23 дБ.
Так же не стоит забывать, что на большинстве корпусов стоят пылевые решетки и поролоновые фильтры. При нагнетании воздуха сквозь преграды образуется статическое давление, что так же способствует возникновению шума. Наилучший исход в таком случае – установка нескольких вентиляторов с низкой скоростью оборотов. Чем меньше скорость вращения, тем ниже статическое давление и шум. А увеличенное количество вентиляторов позволит компенсировать снижение воздушного потока.
Жесткий диск
Жесткий диск это источник вибрации в первую очередь. Его необходимо изолировать от корпуса. Идеальный вариант это подвесить на что либо. В моем случае это оказалась витая пара. Эффект получился потрясающий, как будто жесткий диск работает завернутым в футболку.
Так же отличный вариант заклеить изолентой места соприкосновения жесткого диска и корпуса, если у вас прямой контакт, не через салазки (как у меня на фото).
Почему у меня HDD перевернут вверх ногами? Дело в том, что в 2009 году на работе поставили новые компьютеры фирмы HP, dv5750. В каждом компьютере был жесткий диск вверх ногами. Возник вопрос, как такая уважаемая жесткие диски. Присмотревшись по внимательнее, можно обнаружить, что при «правильном» расположении HDD нагретый воздух задерживается в полостях на дне жесткого диска. При «неправильном» расположении нагретый воздух без препятствий поднимался вверх. Поэтому было решено осваивать положение вверх ногами.
Замечу, что один из жестких дисков на 1.5 ТБ Seagate напрочь отказался заводится. Пришлось его использовать для резервного копирования вместе с док-станцией в вертикальном положении.
Для гашения вибраций HDD существуют способы с большими капиталовложениями и с сомнительной эффективностью отлично описаны в этой статье. Исключение составляет SCYTHE QUIET DRIVE
Это система охлаждения отлично справляется не только с вибрациями, но и с шумом винчестера. Температурный режим остается таким же как и без «глушителя».
В политику охлаждения жестких дисков для бесшумного компьютера не входит использовании активных систем охлаждения. Максимум, если у вас несколько HDD, примените 120 мм на 500-800 об/мин для обдува всей корзины.
Практически все пассивные системы охлаждения вынуждают нас устанавливать HDD в отсек для оптических приводов 5.25″. Поток холодного воздуха там практически отсутствуют и это негативно скажется на температурном режиме HDD. Если вы собираете тихий или бесшумный компьютер, то рекомендуется использовать экономичные и прохладные жесткие диски — нпример «зеленые» от WD.
Минимальное выделение тепла исключает использование активного охлаждения.
Так же при выборе корпуса обратите внимание на системы крепления HDD к корзине или к корпусу. Многие производители корпусов комплектуют свои изделия антивибрационными резиновыми прокладками. В корпусах высокого уровня этому уделяется немало внимания.
Вывод. Использовать в системе один HDD или, лучше SSHD. Если необходима производительность — установите SSD. Если необходима емкость — используйте внешние жесткие диски, но так же с пассивной системой охлаждения. Если не подходит использование внешних HDD попробуйте использовать два зеленых диска и максимально разнесите их в корпусе. Например вставьте в самый нижний и самый верхних отсек в корзине жестких дисков. Для меня оптимальным решением является использовании гибридных дисков SSHD. У них сниженная частота вращения шпинделя и есть несколько гигабайт флеш-памяти для повышения производительности.
Воздушный поток и статическое давление
Значение воздушного потока означает объем прокачиваемого воздуха за единицу времени. Чем больше воздуха прокачивает вентилятор, тем выше эффективность работы и выше воздушный поток. Обычно производители указывают воздушный поток в CFM – кубический фут в минуту или м3/ч – кубический метр за час. 1 м3/ч равен 35.3 CFM. Если возникнет необходимость перевести м3/ч в CFM, необходимо объем в м3/ч умножить на 35.3, а полученный результат разделить на 60. Для перевода CFM в м3/ч, необходимо цифру в CFM умножить на 60 и поделить на 35.3.
Статическое давление представляет собой разницу между давлением воздушного потока сформированного вентилятором и атмосферного давления. В характеристиках указывается в миллиметрах водяного столба (мм H2O). Вентиляторы с высоким атмосферным давлением имеет смысл использовать в местах, где продуваемость воздуха затруднена, например, на нагнетание.
Вентилятор Noctua NF-A12X25 PWM. Оптимальное сочетание воздушного потока и статического давления.
Устройство
Компьютерный вентилятор состоит из трех основных частей ⇒
Корпус вентилятора имеет форму в виде рамки и служит основанием для крепления электропривода (электродвигателя) и лопастей крыльчатки. В зависимости от фирмы производителя и качества изделия, корпус может изготавливаться из пластмассы, металла или резины.
Крыльчатка представляет собой набор лопастей, расположенных по кругу на одной оси с электродвигателем под определенным углом и закрепленных на корпусе вентилятора при помощи подшипников различного вида. Во время вращения, лопасти крыльчатки захватывают воздух и пропуская его через себя, создают постоянный направленный воздушный поток, который охлаждает греющийся элемент.
При производстве компьютерных вентиляторов используют электродвигатели постоянного тока, которые жестко крепятся к корпусу вентилятора.
Тип крепления
В большинстве случаев крепление вентиляторов осуществляется за счет металлических винтов. Так же доступна установка при помощи силиконовых/резиновых винтов. В сравнении с металлическими винтами использование силиконовых/резиновых аналогов помогает снизить передачу вибрации на корпус, а в результате уменьшить шум. А ещё сократить время монтажа. Обычно производители вентиляторов редко кладут крепеж в комплект с вентиляторами. В таком случае крепеж следует искать и покупать отдельно, на местных или китайских торговых площадках.
Резиновый крепеж. Просты в установке и помогают дополнительно гасить вибрацию.
Так же в отдельные модели вентиляторов часто встраиваются силиконовые накладки. При соприкосновении с корпусом вкладыши помогают дополнительно гасить вибрацию. Максимальная эффективность достигается в сочетании с силиконовым/резиновым крепежом.
Подсветка
Некоторые модели вентиляторов оборудованы светодиодами. Наличие подсветки не несет полезной функциональности, а только поможет осветить содержимое системного блока при наличии стеклянной боковой крышки. Выделяют два типа подсветки:
Вентиляторы с фиксированной подсветкой светят только одним цветом или сразу несколькими. Отключить подсветку невозможно, только если выпаять светодиоды.
В RGB используется контроллер, что позволяет менять подсветку автоматически или задать определенное свечение в программе на ПК/смартфона/пульта ДУ.
Краткий итог и рекомендации выбора
Наилучший вентилятор для корпуса лучше выбирать исходя из следующих критериев:
Наиболее доступное и эффективное решение – Deepcool XFAN 120. Средняя цена 2,74 USD, за что пользователь получает прочную раму, гидродинамический подшипник, наличие металлического крепежа в комплекте, а так же подключение 3 pin и molex. Воздушный поток и шум – 65 (данные с упаковки) CFM и 26 дБ. Из недостатков – отсутствие регулировки оборотов.
Deepcool XFAN 120 Наиболее доступный и эффективный 120-мм вентилятор.
За 13.6 USD отличное решение – Noctua NF-S12B redux-1200 PWM. Вентилятор премиального уровня порадует прочной рамой, металлическим крепежом в комплекте, гидродинамическим подшипником с магнитным центрированием, функцией регулировки оборотов и гарантией производителя в 6 лет. На максимальных оборотах воздушный поток 59,21 CFM при уровне шума 18.1 дБ. Работу вентилятора не слышно на отдалении 30-40 см.
Noctua NF-S12B redux-1200 PWM. Наиболее доступный 120-мм вентилятор производства Noctua.
Рейтинг вентиляторов
Классифицируют приборы по назначению, типу конструкции, принципу работы, способу установки. Самыми востребованными считают напольные и настольные аксиальные модели. При выборе рекомендуют учитывать массу агрегата, от которой зависит его устойчивость в момент работы на высокой мощности. Хотя для настенных вариантов этот параметр не принципиален. Какой вентилятор лучше для дома, мы определили путем сравнительных тестов следующих характеристик:
Хорошие вентиляторы для дома нередко оснащены такими функциями, как обогрев, увлажнение, подсветка, ионизация, таймер. Это расширяет сферу применения климатической техники, но увеличивает ее цену. Модели в обзоре разбиты на 3 категории по принципу места их монтажа. В каждом разделе представлено их описание, преимущества и недостатки.