как узнать размер овала
Как рассчитать радиус и диаметр овала
Овал также называют эллипсом. Из-за своей продолговатой формы овал имеет два диаметра: диаметр, который проходит через самую короткую часть овала, или полу-малую ось, и диаметр, который проходит через
Содержание:
Полу минорная ось
Измерьте расстояние между одной точкой фокусировки до точки по периметру овала, чтобы определить a. В этом примере a будет равно 5 см.
Измерьте расстояние между другой точкой фокусировки и той же точкой на периметре, чтобы определить b. В этом примере b будет равен 3 см.
Добавьте a и b вместе и возведите в квадрат сумму. Например, 5 см плюс 3 см равны 8 см, а 8 см в квадрате равны 64 см ^ 2.
Измерьте расстояние между двумя точками фокусировки, чтобы выяснить f; возвести в квадрат результат. В этом примере f равно 5 см, а квадрат 5 см равен 25 см ^ 2.
Вычтите сумму на шаге четыре из суммы на шаге три. Например, 64 см ^ 2 минус 25 см ^ 2 равняется 39 см ^ 2.
Рассчитайте квадратный корень суммы из шага пять. Например, квадратный корень из 39 равен 6,245, округленный до ближайшей тысячной. Следовательно, малая ось или самый короткий диаметр составляет 6,245 см.
Разделите измерение полу-малой оси пополам, чтобы вычислить ее радиус. Например, 6,245 см, разделенные на два, равны 3,122 см.
Полу-Большая Ось
Повторите процесс измерения из предыдущего раздела, чтобы выяснить a и b. В этом примере хорошо использовать те же цифры: 5 см и 3 см.
Добавьте a и b вместе. Результатом является большая полуось. Например, 5 см плюс 3 см равны 8 см, поэтому большая полуось составляет 8 см.
Уменьшить вдвое результат первого шага, чтобы вычислить радиус. Восемь, разделенная на два, равна четырем, поэтому другой радиус равен 4 см.
Нахождение длины дуги эллипса
IP76 > Нахождение длины дуги эллипса
Как ни странно, но для нахождения длины дуги эллипса нет какой-то определенной функции, как в случае длины дуги окружности, или нахождения координат точки на эллипсе. Это интегральное уравнение.
Калькулятор
Get a better browser, bro…
Интегральное уравнение будем решать как обычно делается в подобных случаях: суммировать очень маленькие значения, которые получаются в результате работы некоей функции, на заданном диапазоне данных, которые наращиваются на чрезвычайно малую постоянную величину. Эта малая величина задается вызывающей стороной. В конце статьи есть рабочий пример с исходниками, в котором можно поиграться с этой «малостью».
Длина дуги, как сумма хорд
Самое простое, что может прийти в голову, это двигаться от начала дуги к ее концу с небольшим наращиванием угла отклонения, считать хорду и прибавлять ее к накапливаемой сумме.
Рис.1. Сумма хорд
(1) Сумма хорд
Проще говоря, находим координаты двух точек на эллипсе, отстоящих друг от друга на некий малый угол, по ним находим хорду, как гипотенузу получившегося прямоугольного треугольника.
В коде выглядит так:
Проверим с планетарным размахом. По последним данным Международной Службы Вращения Земли (IERS — 1996) большая экваториальная полуось Земли равна 6 378 136,49 м, а полярная малая — 6 356 751,75 м.
Посчитаем периметр меридиана каким-нибудь онлайн-калькулятором, получаем 40 007 859.543 (некоторые могут дать другое число, т.к. используют приближенные формулы для вычисления периметра).
Представленная выше функция за 109 милисекунд выдала результат 40 007 996.265 при дельте 0.001. Это нельзя назвать точным результатом.
Длина дуги, как интеграл
Длиной некоторой дуги называется тот предел, к которому стремится длина вписанной ломаной, когда длина наибольшего ее звена стремится к нулю:
(2) Предел суммы хорд при максимальной длине хорды, стремящейся к нулю
(3) Длина t-го звена (хорды) вписанной ломаной
Таким образом, длина дуги эллипса может быть описана интегральным уравнением:
(4) Интегрально-дифференциальное уравнение дуги эллипса
Используя параметрическое уравнение эллипса, приходим к уравнению:
Где t1 и t2 – параметры для начала и конца дуги параметрического уравнения эллипса. Параметром является некий угол к оси абсцисс. Что такое и как найти параметр для угла эллипса подробно изложено тут.
Зная, что (cos t)’ = — sin t, (sin t)’ = cos t (подробный вывод приведен тут и тут), получаем следующую формулу:
(5) Длина дуги эллипса
Выводов достаточно, чтобы написать вторую функцию нахождения длины дуги эллипса.
Результат при dt = 0.001 равен 40 007 859,543 за 109 милисекунд. Отлично!
Длина дуги через эксцентриситет
Это еще не окончательный вид уравнения. В ряде интересных параметров для эллипса есть такая числовая характеристика, показывающая степень отклонения эллипса от окружности, как эксцентриситет. Формула для эллипса:
(6) Эксцентриситет эллипса через полуоси
Чем эксцентриситет ближе к нулю, т.е. разница между a и b меньше, тем больше эллипс похож на окружность и наоборот, чем эксцентриситет ближе к единице, тем он более вытянут.
Выразим b 2 = a 2 (1 — e 2 ), подставим в формулу (5), помним, что sin 2 t + cos 2 t = 1 (справочник [1]), убираем a 2 за знак корня, и, как постоянную величину, за знак интеграла тоже, получаем:
(7) Окончательный вид уравнения для длины дуги эллипса
Пишем функцию, ожидаем более шустрого выполнения:
Результат 40 007 859.543, за чуть меньшее время, 94 милисекунды.
Длина дуги через эксцентриситет с подготовкой
Возьмем за основу последнюю функцию. Алгоритм построен так, что в цикле идем от стартового угла, к конечному, на каждой итерации подсчитывая параметр. А если сразу посчитать начальный и конечный параметры и определить условие выхода из цикла? Этим мы однозначно снизим вычислительную нагрузку внутри цикла.
Рис.2. Параметры дуги эллипса.
То есть, вместо того, чтобы идти из точки A в точку B, мы заранее считаем параметры t1 и t2. И в цикле больше нахождением параметров не занимаемся, а только считаем очередное приращение.
Берем код последней реализации и улучшаем:
Результат — 40 007 859,543 за 30 милисекунд! Мысль явно здравая.
Длина дуги и хорошо забытые хорды
Но вернемся к сумме хорд. Что там-то не так? Казалось бы, все просто, понятно и должно работать, но результат, мягко говоря, не точен.
Работая с вещественными типами, результат зависит от «мелкости» приращения, от разрядности используемых типов. Накапливаемые погрешности, неточное представление дробного числа и прочие прелести чисел с плавающей запятой.
Тип Extended – самый точный из существующих в Delphi (и, как следствие, самый медленный). Перепишем нахождение длины дуги хордами, используя этот тип, и без вызовов внешних функций нахождения координат на эллипсе.
Результат 40 007 859.542 за 94 милисекунды. Разница в одну тысячную, и такое же время. Весьма неплохо!
Практика
Качаем, запускаем. Видим такое окно:
Рис.3. Пример: Вид при запуске
При запуске в полях полуосей находятся «земные» значения. Эллипс сильно смахивает на окружность. Можно сразу нажать «Расчет», увидеть значения полярного меридиана, и начинать уже эксперименты.
Для начала проверим корректность получаемых результатов. Я попытался найти какие-нибудь онлайн калькуляторы для подсчета длины дуги эллипса, в которых можно было бы указать стартовый угол и произвольное отклонение, либо просто пару углов, определяющих дугу. Но все калькуляторы считают периметр эллипса. А с произвольной дугой как-то… не встретились.
Длина дуги эллипса (s) в зависимости от его параметра (θ) Автор: Illustr — собственная работа, CC BY-SA 4.0, Ссылка
Заскриним несколько моментов и посчитаем корректность:
Рис.4. Скрины расчетов
Введем a=2, b=0.5, стартовый угол равен 0, отклонение θ=5.642.
Рис.5. Подсчет длины дуги для a=2, b=0.5, стартовый угол=0, отклонение θ=5.642
Видим результат у всех один 8.055. Т.е правы все.
Аналогично поступаем с остальными тремя скринами:
Какой результат более истинный? Смотрите сами. Уменьшение дельты, т.е. угла для подсчетов, ведет к более точному результату. На 0.001 интегральные функции выдали результат как хордовые. При более грубой дельте, интегральные чуть изменились, а хордовые верны своему результату.
Сделаем дельту очень мелкой, равной 0.00001. Результат у всех, кроме первой, тот же, 1.333.
Лично я начинаю верить 5-ой формуле.
Вывод : Формулы 2-5 работают как надо. Фаворит 5. За меньшее время, т.е. при более «грубой» дельте, находит правильный результат.
Проверим на ужасных эллипсах. Т.е. где эксцентриситет очень близок к единице.
Рис.6. Проверка на очень «сплющенном» эллипсе
Можем заметить следующее: при 0.00001 функции 2 и 3 дали результат, близкий к результату функции 4, полученный при дельте 0.001. При дельте 0.00001 функция 4 дала результат, близкий к результату функции 5. Сама же функция 5 слабо колеблется в показаниях, что при дельте в 0.001, что при 0.00001.
Аналогичную ситуацию можно пронаблюдать при сильно вытянутом эллипсе:
Рис.7. Проверка на очень «вытянутом» эллипсе
Таким образом, имеет смысл использовать функции 4 и 5. Одну, как представительницу интегрального сословия, самую быструю и более точную из них. Другую, как представительницу очевидного и простого метода, работающую, между тем, лучше своих интегральных коллег при минимальных ресурсных затратах.
По интерфейсу
Правая кнопка мыши задает стартовый угол. Удерживая правую кнопку мыши можно «прогуляться» по эллипсу. Конечная точка дуги будет следовать за стартовой точкой, отстоя на заданный ранее угол. Если поставить галку на «сохранять параметрическое отклонение», параметрический угол между t1 и t2 станет неизменен. Очень полезно пронаблюдать, как будет меняться сектор.
Левая кнопка мыши задает конечную точку дуги, т.е. угол отклонения.
Что такое эллипс: формула длины окружности эллипса
Понятие о кривых второго порядка
Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.
Общий вид уравнения кривой второго порядка следующий:
,
где A, B, C, D, E, F – числа и хотя бы один из коэффициентов A, B, C не равен нулю.
При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.
Понятие алгебраической линии и её порядка
Линию на плоскости называют алгебраической, если в аффинной системе координат её уравнение имеет вид , где , где – многочлен, состоящий из слагаемых вида ( ( – действительное число, – целые неотрицательные числа).
Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательныхстепенях.
Далее под словом «линия» по умолчанию будет подразумеваться алгебраическая линия на плоскости
Порядок линии равен максимальному значению входящих в него слагаемых.
Общее уравнение линии второго порядка имеет вид , где , где – произвольные действительные числа ( принято записывать с множителем-«двойкой»), причём коэффициенты принято записывать с множителем-«двойкой»), причём коэффициенты не равны одновременно нулю.
Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемыееё уравнения и у каждого из них найти сумму степенейвходящих переменных.
слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «игрек» в 1-й степени;
в слагаемом переменные отсутствуют, поэтому сумма их степеней равна нулю.
Далее из полученных чисел выбирается максимальное значение, в данном случае единица, – это и есть порядок линии.
Теперь разберёмся, почему уравнение задаёт линию второго порядка:
слагаемое содержит «икс» во 2-й степени;
у слагаемого содержит «икс» во 2-й степени;
у слагаемого сумма степеней переменных: 1 + 1 = 2;
слагаемое содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.
Максимальное значение: 2
Если к нашему уравнению дополнительно приплюсовать, скажем, , то оно уже будет определять линию третьего порядка. Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, то оно уже будет определять линию третьего порядка. Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты не равны одновременно нулю.
В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат , то речь уже зайдёт о линии 4-го порядка, и т.д.
Однако вернёмся к общему уравнению и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола , уравнение которой легко привести к общему виду , и гипербола , и гипербола с эквивалентным уравнением . Однако не всё так гладко….
Определение эллипсa
Эллипс — это замкнутая плоская кривая, сумма расстояний от каждой точки которой до двух точек F1 и F2 равна постоянной величине. Точки F1 и F2 называют фокусами эллипса.
Рис.1 | Рис.2 |
Формула площади эллипса через каноническое уравнение
Формула для нахождения площади в этом случае такова:
Решим задачу этим способом.
Дано уравнение эллипса. Найти его площадь и округлить ответ до целого числа.
2 5 x 2 + 9 y 2 = 1
Решение
Для начала найдем длины наших полуосей:
S = π ⋅ a ⋅ b = π ⋅ 5 ⋅ 3 ≈ 4 7 (см. кв.)
Ответ: 47 см. кв.
Соотношения между элементами эллипса
Элементы эллипсa
А1А2 = 2 a – большая ось эллипса (проходит через фокусы эллипса)
B1B2 = 2 b – малая ось эллипса (перпендикулярна большей оси эллипса и проходит через ее центр)
a – большая полуось эллипса
b – малая полуось эллипса
O – центр эллипса (точка пересечения большей и малой осей эллипса)
Радиус эллипсa R – отрезок, соединяющий центр эллипсa О с точкой на эллипсе.
R = | ab | = | b |
√ a 2 sin 2 φ + b 2 cos 2 φ | √ 1 – e 2 cos 2 φ |
где e – эксцентриситет эллипсa, φ – угол между радиусом и большой осью A1A2.
Коэффициент сжатия эллипсa (эллиптичность) k – отношение длины малой полуоси к большой полуоси. Так как малая полуось эллипсa всегда меньше большей, то k k = 1:
k = | b |
a |
где e – эксцентриситет.
Что такое канонический вид уравнения?
Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:
Связанные определения
Расчет площади
Объяснение метода
Эллипс, заданный каноническим уравнением
Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.
Фокусы обозначены как и и на рисунке ниже.
Каноническое уравнение эллипса имеет вид:
,
где a и b (a > b) – длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.
Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.
Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат – в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат – малой осью. Их отрезки от вершины до центра эллипса называются полуосями.
Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.
Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:
Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия – эллипс.
Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.
.
Точки и и , обозначенные зелёным на большей оси, где
,
называются фокусами.
называется эксцентриситетом эллипса.
Отношение b/a характеризует “сплюснутость” эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.
Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.
Решение. Делаем несложные умозаключения:
– если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.
Подставляем и вычисляем:
Результат – каноническое уравнение эллипса:
.
Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .
.
Вычисляем квадрат длины меньшей полуоси:
Составляем каноническое уравнение эллипса:
Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .
Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:
.
Получаем фокусы эллипса:
Классификация линий второго порядка
С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:
( и и – положительные действительные числа)
1) – каноническое уравнение эллипса;
2) – каноническое уравнение гиперболы;
3) – каноническое уравнение параболы;
4) – мнимый эллипс;
5) – пара пересекающихся прямых;
6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);
7) – пара параллельных прямых;
– пара мнимых параллельных прямых;
9) – пара совпавших прямых.
У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте № 7 уравнение задаёт пару прямых задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим. Прямые , параллельные оси ординат? Ответ: оно не считается каноническим. Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.
Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова.
Что такое эллипс и фокусное расстояние
Внимание!
– половина расстояния между фокусами;
– большая полуось;
– малая полуось.
Фокусное расстояние и полуоси связаны соотношением:
Как построить эллипс?
Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:
Построить эллипс, заданный уравнением
Решение: сначала приведём уравнение к каноническому виду:
Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса, которые находятся в точках заключается в том, что оно позволяет моментально определить вершины эллипса, которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .
В данном случае :
:
Отрезок называют большой осью эллипса;
отрезок называют большой осью эллипса;
отрезок – малой осью;
число называют большой полуосью эллипса;
число называют большой полуосью эллипса;
число – малой полуосью.
в нашем примере: .
Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.
По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.
Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:
на черновике быстренько выражаем:
Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.
Заданный каноническим уравнением эллипс симметричен относительно координатных осей, а также относительно начала координат. И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-й координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:
Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.
Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:
(красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:
Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?
Свойства
Эллипс также можно описать как
Формула длины окружности эллипса
Хотя рассматриваемая фигура является достаточно простой, длину ее окружности точно можно определить, если вычислить так называемые эллиптические интегралы второго рода. Однако, индусский математик-самоучка Рамануджан еще в начале XX века предложил достаточно простую формулу длины эллипса, которая приближается к результату отмеченных интегралов снизу. То есть рассчитанное по ней значение рассматриваемой величины будет немного меньше, чем реальная длина. Эта формула имеет вид: P ≈ pi * [3 * (a+b) – √((3 * a + b) * (a + 3 * b))], где pi = 3,14 – число пи.
Например, пусть длины двух полуосей эллипса будут равны a = 10 см и b = 8 см, тогда его длина P = 56,7 см.
Каждый может проверить, что если a = b = R, то есть рассматривается обычная окружность, тогда формула Рамануджана сводится к виду P = 2 * pi * R.
Отметим, что в школьных учебниках часто приводится другая формула: P = pi * (a + b). Она является более простой, но и менее точной. Так, если ее применить для рассмотренного случая, то получим значение P = 56,5 см.