как узнать сильное основание или слабое основание
Гидролиз солей. Часть II
Сильные и слабые электролиты
Естественно, невозможно перечислить все существующие в природе кислоты. Приведены лишь наиболее «популярные». Следует также понимать, что разделение кислот на сильные и слабые является достаточно условным.
Существенно проще обстоят дела с сильными и слабыми основаниями. Можно воспользоваться таблицей растворимости. К сильным основаниям относятся все растворимые в воде основания, кроме NH 4 OH. Эти вещества называют щелочами (NaOH, KOH, Ca(OH) 2 и т. д.)
Гидролиз солей. Главные факты
Читающим эту статью может показаться, что мы уже забыли об основной теме разговора, и ушли куда-то в сторону. Это не так! Наша беседа о кислотах и основаниях, о сильных и слабых электролитах имеет прямое отношение к гидролизу солей. Сейчас вы в этом убедитесь.
Итак, позвольте изложить вам основные факты:
Сильная кислота, слабое основание | Слабая кислота, сильное основание | Слабая кислота, слабое основание | Сильная кислота, сильное основание | |
Направление гидролиза | По катиону | По аниону | По катиону и по аниону | Гидролиз не идет |
Характер среды | Кислая | Щелочная | Близкая к нейтральной | Нейтральная |
Продукты реакции | Кислота и основная соль | Основание и кислая соль | Довольно разнообразны | — |
Нам осталось последовательно обсудить 4 группы солей и для каждой из них привести специфический «сценарий» гидролиза. В следующей части мы начнем с солей, образованных слабым основанием и сильной кислотой.
Гидролиз
По катиону, по аниону или нет гидролиза?
Если в состав соли входит остаток сильного основания и остаток слабой кислоты, то гидролиз идет по аниону. Примеры: K3PO4, NaNO2, Ca(OCl)2, Ba(CH3COO)2, Li2SiO3.
Если соль образована остатком слабого основания и слабой кислоты, то гидролиз идет и по катиону, и по аниону. Примеры: Mg(NO2)2, Al2S3, Cr2(SO3)3, CH3COONH4.
Среда раствора
Среда раствора может быть нейтральной, кислой или щелочной. Определяется типом гидролиза. Некоторые задания могут быть построены так, что, увидев соль, вы должны будете определить ее тип раствора.
Однако замечу, что в дигидрофосфатах, гидросульфитах и гидросульфатах среда всегда кислая из-за особенностей диссоциации. Примеры: NH4H2PO4, LiHSO4. В гидрофосфатах среда щелочная из-за того, что константа диссоциации по третьей ступени меньше, чем константа гидролиза. Примеры: K2HPO4, Na2HPO4.
Попробуйте определить среду раствора для соединений из самостоятельного задания, которое вы только что решили. Ниже будет располагаться решение.
С целью запутать в заданиях часто бывают даны синонимы. Так «среду раствора» могут заменить водородным показателем pH.
Запомните, что кислая среда характеризуется pH 7.
Кислоты и основания
После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. В статье описано, что такое pH раствора, какими общими свойствами обладают кислоты и основания.
В неорганической химии, как правило, под кислотой имеют ввиду кислоту Бренстеда-Лоури, то есть вещества, способные отдать протон. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса. Данные правила справедливы для кислот и оснований.
Диссоциация
Свойства кислот и оснований
Основания, как правило, мыльные на ощупь, кислоты, в большинстве своём, имеют кислый вкус.
При реакции основания со многими катионами формируется осадок. При реакции кислоты с анионами, как правило, выделяется газ.
Сильные и слабые кислоты и основания
Сильные кислоты
Примеры сильных кислот: HCl, HBr, HF, HNO3, H2SO4, HClO4
Список сильных кислот
Слабые кислоты
Растворяются в воде только частично, например, HF:
Сильные основания полностью диссоциируют в воде:
К сильным основаниям относятся гидроксиды металлов первой (алкалины, щелочные металы) и второй (алкалинотеррены, щёлочноземельные металлы) группы.
Список сильных оснований
Слабые основания
Список слабых оснований
Реакции кислот и оснований
Сильная кислота и сильное основание
Такая реакция называется нейтрализацией: при количестве реагентов достаточном для полной диссоциации кислоты и основания, результирующий раствор будет нейтральным.
Слабое основание и слабая кислота
Сильное основание и слабая кислота
Основание полностью диссоциирует, кислота диссоциирует частично, результирующий раствор имеет слабые свойства основания:
Сильная кислота и слабое основание
Кислота полностью диссоциирует, основание диссоциирует не полностью:
Диссоциация воды
Способы определения pH
Инструментальный метод
Индикаторы
Вещество, которое изменяет цвет в некотором интервале значений pH в зависимости от кислотности раствора, используя несколько индикаторов можно добиться достаточно точного результата.
Все катионы кроме металлов первой и второй группы имеют кислотные свойства.
Буфферный раствор
Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного основания, в основном состоят из:
Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание с соответствующей солью, при этом необходимо учесть:
Как узнать сильное основание или слабое основание
12.4. Сила кислот и оснований
Направление смещения кислотно-основного равновесия определятся следующим правилом:
Кислотно-основные равновесия смещены в сторону более слабой кислоты и более слабого основания.
Кислота тем сильнее, чем легче она отдает протон, а основание тем сильнее, чем легче оно принимает протон и прочнее его удерживает. Молекула (или ион) слабой кислоты не склонна отдавать протон, а молекула (или ион) слабого основания не склонна его принимать, этим и объясняется смещение равновесия в их сторону. Силу кислот, а также силу оснований можно сравнивать только в одном и том же растворителе
Так как кислоты могут реагировать с разными основаниями, то соответствующие равновесия будут смещены в ту или иную сторону в разной степени. Поэтому для сравнения силы разных кислот определяют, насколько легко эти кислоты отдают протоны молекулам растворителя. Аналогично определяется и сила оснований.
Сила кислоты – характеристика кислоты, показывающая, насколько легко кислота отдает протоны молекулам данного растворителя.
Сила основания – характеристика основания, показывающая, насколько прочно основание связывает протоны, оторванные от молекул данного растворителя.
Вы уже знаете, что молекула воды (растворителя) может и принимать, и отдавать протон, то есть проявляет и свойства кислоты, и свойства основания. Поэтому и кислоты, и основания можно сравнивать между собой по силе в водных растворах. В одном и том же растворителе сила кислоты в значительной степени зависит от энергии рвущейся связи А—Н, а сила основания – от энергии образующейся связи В—Н.
Для количественной характеристики силы кислоты в водных растворах можно использовать константу кислотно-основного равновесия обратимой реакции данной кислоты с водой:
HА + Н2О А + H3O .
Для характеристики силы кислоты в разбавленных растворах, в которых концентрация воды практически постоянна, пользуются константой кислотности:
,
Совершенно аналогично для количественной характеристики силы основания можно использовать константу кислотно-основного равновесия обратимой реакции данного основания с водой:
А + Н2О НА + ОН ,
а в разбавленных растворах – константу основности
, где Kо(HA) = Kc·[H2O].
Практически для оценки силы основания используют константу кислотности кислоты, получающейся из данного основания (так называемой » сопряженной « кислоты), так как эти константы связаны простым соотношением
Ко(А ) = К(Н2О)/Кк(НА).
Иными словами, основание тем сильнее, чем слабее сопряженная кислота. И наоборот, кислота тем сильнее, чем слабее сопряженное основание.
.
Здесь величина с индексом » пр» (в числителе) характеризует прореагировавшую часть молекул кислоты НА, а величина с индексом » исх» (в знаменателе) – исходную порцию кислоты.
В соответствии с уравнением реакции
nпр(HA) = n(H3O ) = n(A ) cпр(HA) = c(H3O ) = c(A );
[H3O ] = [A ] = a · сисх(НА);
[HA] = (1 – a ) · сисх(НА).
Подставив эти выражения в уравнение константы кислотности, получим
.
Таким образом, зная константу кислотности и общую концентрацию кислоты, можно определить степень протолиза этой кислоты в данном растворе. Аналогично через степень протолиза можно выразить и константу основности основания, поэтому в общем виде
Это уравнение представляет собой математическое выражение закона разбавления Оствальда. Если растворы разбавленные, то есть исходная концентрация не превышает 0,01 моль/л, то можно использовать приближенное соотношение
Для грубой оценки степени протолиза это уравнение можно использовать и при концентрациях до 0,1 моль/л.
Кислотно-основные реакции – процессы обратимые, но не всегда. Рассмотрим поведение в воде молекул хлороводорода и фтороводорода:
Сильная кислота – кислота, реагирующая с избытком воды необратимо.
Слабая кислота – кислота, реагирующая с избытком воды обратимо и, как правило, незначительно.
Сильные кислоты: HCl, HBr, HI, HClO4, HClO3, H2SO4, H2SeO4, HNO3 и некоторые другие.
Теперь обратим внимание на правые части уравнений реакций с водой хлороводорода и фтороводорода. Фторид-ион может принимать протон (отрывая его у иона оксония) и превращаться в молекулу фтороводорода, а хлорид-ион не может. Следовательно, фторид-ион проявляет свойства основания, а хлорид-ион таких свойств не проявляет (но только в разбавленных растворах).
Как и кислоты, существуют сильные и слабые основания.
Сильное основание – основание, реагирующее с избытком воды необратимо.
Слабое основание – основание, реагирующее с избытком воды обратимо и, как правило, незначительно.
К сильным веществам-основаниям относятся все хорошо растворимые ионные гидроксиды (их называют еще » щелочами « ), так как при их растворении в воде гидроксид-ионы полностью переходят в раствор.
К слабым основаниям относится NH3 (КО = 1,74· 10 –5 ) и некоторые другие вещества. К ним же относятся и практически нерастворимые гидроксиды элементов, образующих металлы, (» гидроксиды металлов» ) потому, что при взаимодействии этих веществ с водой в раствор переходит лишь ничтожное количество гидроксид-ионов.
Слабые основания-частицы (их еще называют » анионные основания» ): F , NO2 , SO3 2 , S 2 , CO3 2 , PO4 3 и другие анионы, образующиеся из слабых кислот.
Не обладают основными свойствами анионы Cl , Br , I , HSO4 , NO3 и другие анионы, образующиеся из сильных кислот
Не обладают кислотными свойствами катионы Li , Na , K , Ca 2 , Ba 2 и другие катионы, входящие в состав сильных оснований.
Кроме частиц-кислот и частиц-оснований, существуют еще частицы, проявляющие и кислотные, и основные свойства. Такие свойства молекулы воды вам уже известны. Кроме воды, это гидросульфит-ион, гидросульфид-ион и другие аналогичные ионы. Например, HSO3 проявляет как свойства кислоты
HSO3 + H2O SO3 + H3O , так и свойства основания
HSO3 + H2O H2SO3 + OH .
Подобные частицы называются амфолитами.
Амфолит – частица, способная как отдавать протон молекуле растворителя, так и принимать протон от молекулы растворителя.
Кислые соли – соли, в состав которых входят анионы, способные отдавать протон.
Примеры кислых солей и их названий:
KHS – гидросульфид калия,
NaHSO4 – гидросульфат натрия,
LiHSO3 – гидросульфит лития,
Ca(HCO3)2 – гидрокарбонат кальция,
KH2PO4 – дигидрофосфат калия,
Na2HPO4 – гидрофосфат натрия.
Как вы уже, наверное, заметили, у кислотно-основных и окислительно-восстановительных реакций есть много общего. Проследить общие черты и найти отличия этих типов реакций вам поможет схема, изображенная на рисунке 12.3.
СИЛА КИСЛОТЫ, СИЛА ОСНОВАНИЯ, КОНСТАНТА КИСЛОТНОСТИ, КОНСТАНТА ОСНОВНОСТИ, СОПРЯЖЕННАЯ КИСЛОТА, СОПРЯЖЕННОЕ ОСНОВАНИЕ, СТЕПЕНЬ ПРОТОЛИЗА, ЗАКОН РАЗБАВЛЕНИЯ ОСТВАЛЬДА, СИЛЬНАЯ КИСЛОТА, СЛАБАЯ КИСЛОТА, СИЛЬНОЕ ОСНОВАНИЕ, СЛАБОЕ ОСНОВАНИЕ, ЩЕЛОЧЬ, АНИОННОЕ ОСНОВАНИЕ, АМФОЛИТЫ, КИСЛЫЕ СОЛИ
1.Какая из кислот в большей степени склонна отдавать протон в водном растворе а) азотная или азотистая, б) серная или сернистая, в) серная или соляная, г) сероводородная или сернистая? Составьте уравнения реакций. В случае обратимых реакций запишите выражение для констант кислотности.
2.Сравните энергию атомизации молекул HF и HCl. Согласуются ли эти данные с силой плавиковой и соляной кислот?
3.Какая частица является более сильной кислотой: а) молекула угольной кислоты или гидрокарбонат-ион, б) молекула фосфорной кислоты, дигидрофосфат-ион или гидрофосфат-ион, в) молекула сероводорода или гидросульфид-ион?
4.Почему в приложении 13 вы не найдете константы кислотности серной, соляной, азотной и некоторых других кислот?
5.Докажите справедливость соотношения, связывающего константу основности и константу кислотности сопряженных кислоты и основания.
6.Запишите уравнения реакций с водой а) бромоводорода и азотистой кислоты, б) серной и сернистой кислот, в) азотной кислоты и сероводорода. В чем отличия этих процессов?
7.Для следующих амфолитов: HS , HSO3 , HCO3 , H2PO4 , HPO4 2 , H2O – составьте уравнения реакций этих частиц с водой, запишите выражения для констант кислотности и основности, выпишите значения этих констант из приложений 13 и 14. Определите, какие свойства, кислотные или основные преобладают у этих частиц?
8.Какие процессы могут происходить при растворении в воде фосфорной кислоты?
Сравнение реакционной способности сильных и слабых кислот.
а) Реакции ионов оксония с оксид-ионами
В этих реакциях оксид-ион не успевает перейти в раствор, а сразу реагирует с ионом оксония. Следовательно, реакция протекает на поверхности оксида. Такие реакции идут до конца, так как из сильной кислоты и сильного основания образуется очень слабый амфолит (вода).
Пример. Реакция азотной кислоты с оксидом магния:
MgO + 2HNO3p = Mg(NO3)2p + H2O.
б) Реакции ионов оксония с гидроксид-ионами
Из всех частиц-оснований, существующих в водных растворах, гидроксид-ион является самым сильным основанием. Его константа основности (55,5) во много раз превышает константы основности остальных частиц-оснований. Гидроксид-ионы входят в состав щелочей и при их растворении переходят в раствор. Механизм реакции ионов оксония с гидроксид-ионами:
.
Пример 1. Реакция соляной кислоты с раствором гидроксида натрия:
HClp + NaOHp = NaClp + H2O.
Но если в воду добавить вещество-кислоту или вещество-основание, то в растворе появится избыток одного из этих ионов. Раствор станет кислым или щелочным.
Гидроксид-ионы входят в состав не только щелочей, но и практически нерастворимых оснований, а также амфотерных гидроксидов (амфотерные гидроксиды в этом отношении можно рассматривать как ионные соединения). Со всеми этими веществами ионы оксония также реагируют, причем, как и в случае основных оксидов, реакция протекает на поверхности твердого вещества. Механизм реакции для гидроксида состава M(OH)2:
.
Cu(OH)2 + 2H3O = Cu 2 + 4H2O
Cu(OH)2 + H2SO4р = CuSO4 + 2H2O.
в) Реакции ионов оксония со слабыми основаниями
Как и в растворах щелочей, в растворах слабых оснований также присутствуют гидроксид-ионы, но их концентрация во много раз меньше, чем концентрация самих частиц-оснований (это отношение равно степени протолиза основания). Поэтому скорость реакции нейтрализации гидроксид-ионов во много раз меньше, чем скорость реакции нейтрализации самих частиц-оснований. Следовательно, преобладающей будет реакция между ионами оксония и частицами-основаниями.
Пример 1. Реакция нейтрализации соляной кислоты раствором аммиака:
.
Но равновесие в ней очень сильно сдвинуто вправо (в сторону продуктов реакции), настолько сильно, что обратимостью часто пренебрегают, записывая молекулярное уравнение этой реакции со знаком равенства:
Пример 2. Реакция бромоводородной кислоты с раствором гидрокарбоната натрия. Будучи амфолитом, гидрокарбонат-ион в присутствии ионов оксония ведет себя как слабое основание:
Образующаяся угольная кислота может содержаться в водных растворах лишь в очень небольших концентрациях. При увеличении концентрации она разлагается. Механизм разложения можно представить себе следующим образом:
Суммарные химические уравнения:
H3O + HCO3 = CO2 + 2H2O
HBrр + NaHCO3р = NaBrр + CO2 + H2O.
Пример 3. Реакции, протекающие при сливании растворов хлорной кислоты и карбоната калия. Карбонат-ион тоже слабое основание, хотя и более сильное, чем гидрокарбонат-ион. Реакции между этими ионами и ионом оксония полностью аналогичны. В зависимости от условий проведения, реакция может остановиться на стадии образования гидрокарбонат-иона, а может привести и к образованию углекислого газа:
а) H3O + CO3 = HCO3 + H2O
HClO4р + K2CO3р = KClO4р + KHCO3р;
б) 2H3O + CO3 = CO2 + 3H2O
2HClO4р + K2CO3р = 2KClO4р + CO2 + H2O.
Аналогичные реакции протекают даже в том случае, когда соли, содержащие частицы-основания, нерастворимы в воде. Как и в случае основных оксидов или нерастворимых оснований, в этом случае реакция тоже протекает на поверхности нерастворимой соли.
Пример 4. Реакция между соляной кислотой и карбонатом кальция:
CaCO3 + 2H3O = Ca 2 + CO2 + 3H2O
CaCO3р + 2HClр = CaCl2р + CO2 + H2O.
Препятствием к проведению таких реакций может послужить образование нерастворимой соли, слой которой будет затруднять проникновение ионов оксония к поверхности реагента (например, в случае взаимодействия карбоната кальция с серной кислотой).
НЕЙТРАЛЬНЫЙ РАСТВОР, КИСЛЫЙ РАСТВОР, ЩЕЛОЧНОЙ РАСТВОР, РЕАКЦИЯ НЕЙТРАЛИЗАЦИИ.
1.Составьте схемы механизмов реакций ионов оксония со следующими веществами и частицами: FeO, Ag2O, Fe(OH)3, HSO3 , PO4 3 и Cu2(OH)2CO3. По схемам составьте ионные уравнения реакций.
2.С какими из следующих оксидов будут реагировать ионы оксония: CaO, CO, ZnO, SO2, B2O3, La2O3? Составьте ионные уравнения этих реакций.
3.С какими из следующих гидроксидов будут реагировать ионы оксония: Mg(OH)2, B(OH)3, Te(OH)6, Al(OH)3? Составьте ионные уравнения этих реакций.
4.Составьте ионные и молекулярные уравнения реакций бромоводородной кислоты с растворами следующих веществ: Na2CO3, K2SO3, Na2SiO3, KHCO3.
5.Составьте ионные и молекулярные уравнения реакций раствора азотной кислоты со следующими веществами: Cr(OH)3, MgCO3, PbO.
Реакции растворов сильных кислот с основаниями, основными оксидами и солями.
В отличии от растворов сильных кислот в растворах слабых кислот в качестве частиц-кислот присутствуют не только ионы оксония, но и молекулы самой кислоты, причем молекул кислоты во много раз больше, чем ионов оксония. Поэтому в этих растворах преобладающей реакцией будет реакция самих частиц-кислот с частицами-основаниями, а не реакции ионов оксония. Скорость реакций с участием слабых кислот всегда меньше скорости аналогичных реакций с участием сильных кислот. Часть этих реакций обратима, и тем больше, чем слабее участвующая в реакции кислота.
а) Реакции слабых кислот с оксид-ионами
Это единственная группа реакций слабых кислот, которые протекают необратимо. Скорость реакции зависит от силы кислоты. Некоторые слабые кислоты (сероводородная, угольная и др.) в реакции с малоактивными основными и амфотерными оксидами (CuO, FeO, Fe2O3, Al3O3, ZnO, Cr2O3 и др.) не вступают.
Пример. Реакция, протекающая между оксидом марганца(II) и раствором уксусной кислоты. Механизм этой реакции:
Уравнения реакции:
MnO + 2CH3COOH = Mn 2 + 2CH3COO + H2O
MnO + 2CH3COOHр = Mn(CH3COO)2р + H2O.(Соли уксусной кислоты называются ацетатами)
б) Реакции слабых кислот с гидроксид-ионами
В качестве примера рассмотрим, как реагируют с гидроксид-ионами молекулы фосфорной (ортофосфорной) кислоты:
В результате реакции получаются молекулы воды и дигидрофосфат-ионы.
Если после завершения этой реакции в растворе остаются гидроксид-ионы, то дигидрофосфат-ионы, являясь амфолитами, будут с ними реагировать:
Образуются гидрофосфат-ионы, которые, также являясь амфолитами, могут реагировать с избытком гидроксид-ионов:
.
Ионные уравнения этих реакций
H3PO4 + OH H2PO4 + H2O;
H2PO4 + OH HPO4 2 + H2O;
HPO4 + OH PO4 3 + H2O.
Равновесия этих обратимых реакций смещены вправо. В избытке раствора щелочи (например, NaOH) все эти реакции протекают практически необратимо, поэтому их молекулярные уравнения обычно записывают так:
Если целевым продуктом этих реакций является фосфат натрия, то можно записать и суммарное уравнение:
H3PO4 + 3NaOH = Na3PO4 + 3H2O.
Соответствующая характеристика основания называется кислотностью.
в) Реакции слабых кислот со слабыми основаниями
Практически все эти реакции обратимы. В соответствии с общим правилом равновесия в таких обратимых реакциях смещены в сторону более слабых кислот и более слабых оснований.
ОСНОВНОСТЬ КИСЛОТЫ, КИСЛОТНОСТЬ ОСНОВАНИЯ.
1.Составьте схемы механизмов реакций, протекающих в водном растворе между муравьиной кислотой и следующими веществами: Fe2O3, KOH и Fe(OH)3. По схемам составьте ионные и молекулярные уравнения этих реакций.
2.С какими из перечисленных веществ будет реагировать в растворе сернистая кислота: LiOH, K2CO3, Na2SO4, KCl? Составьте ионные и молекулярные уравнения реакций.
3.Раствор какого вещества получится в результате сливания раствора, содержащего 29,4 г фосфорной кислоты, с раствором, содержащим 8 г гидроксида натрия? Определите массу соли, которая может быть выделена из этого раствора при выходе, равном 98 %.
Реакции растворов слабых кислот с основаниями, основными оксидами и солями.
Среди частиц, проявляющих кислотные свойства, особое место занимают гидратированные катионы некоторых элементов, образующих металлы. Эти ионы появляются в растворе, например, при растворении соответствующей соли:
Образовавшиеся гидратированные катионы представляют собой сложные частицы состава [Zn(H2O)4] 2 (ион тетрааквацинка) и [Al(H2O)6] 3 (ион гексаакваалюминия), в которых атомы цинка или алюминия связаны с атомами кислорода химическими связями, образовавшимися по донорно-акцепторному механизму. Структурные формулы этих частиц можно изобразить двумя способами:
Причина кислотных свойств таких ионов в том, что на атомах водорода, входящих в их состав, образуется большой положительный частичный заряд, значительно больший, чем на атомах водорода в свободных молекулах воды. Поэтому эти ионы могут отдавать протон частицам-основаниям, а также частицам-амфолитам, в том числе и молекулам воды. В качестве примера рассмотрим реакцию с водой иона тетрааквацинка:
Znaq 2 + 2H2O Zn OH aq+ H3O .
Так как катионные кислоты представляют собой слабые кислоты, равновесие этих обратимых реакции смещено в сторону исходных веществ.
Кроме таких гидратированных катионов, существуют гидратированные катионы и другого типа, например: [K(H2O)n] или [Ba(H2O)n] 2 . В этих сложных частицах молекулы воды связаны с центральным ионом электростатическими силами, а число молекул воды непостоянно. Гидратированные катионы этого типа кислотными свойствами не обладают. К ним относятся катионы щелочных металлов, кальция, стронция, бария, то есть катионы элементов, атомы которых не склонны образовывать ковалентные связи, а также ионы серебра и некоторые другие.
1.Разделите перечисленные гидратированные катионы на две группы по типу связи, удерживающей гидратную оболочку: Cr 3 aq, Li aq, Sr 2 aq, Be 2 aq, Mg 2 aq, Na aq, Ca 2 aq, Fe 3 aq, Fe 2 aq, Cu 2 aq, Ag aq. Какие из этих ионов представляют собой катионные кислоты? 2.В растворах каких из перечисленных солей реакция среды кислотная:
а) Na2SO4, MgSO4, NaHSO4;
б) AlCl3, FeCl2, CaCl2;
в) Ca(HCO3)2, NaHCO3, Na2CO3?
3.Используя общее правило, объясните направление смещения равновесия обратимой реакции Mg 2 aq + 2H2O Mg OH aq+ H3O .
4.В каком направлении сместится равновесие в этом растворе а) при его разбавлении водой, б) при добавлении в него раствора сильной кислоты?
Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору