как узнать синус зная тангенс

Как найти синус и косинус через тангенс?

Как найти синус, если известен тангенс?

Как найти косинус, если известен тангенс?

как узнать синус зная тангенс. 365794 42. как узнать синус зная тангенс фото. как узнать синус зная тангенс-365794 42. картинка как узнать синус зная тангенс. картинка 365794 42.

Косинус через тангенс

Для того, чтобы найти значение косинуса по известному тангенсу, нужно воспользоваться одним из тригонометрических тождеств.

как узнать синус зная тангенс. 35fa982b6a7852cf2096623bf5f72393. как узнать синус зная тангенс фото. как узнать синус зная тангенс-35fa982b6a7852cf2096623bf5f72393. картинка как узнать синус зная тангенс. картинка 35fa982b6a7852cf2096623bf5f72393.

Сумма квадрата тангенса и единицы равна отношению единицы и квадрата косинуса.

Отсюда можно выразить косинус:

как узнать синус зная тангенс. b4cd9ca536cd8750e32d7d607d1ec449. как узнать синус зная тангенс фото. как узнать синус зная тангенс-b4cd9ca536cd8750e32d7d607d1ec449. картинка как узнать синус зная тангенс. картинка b4cd9ca536cd8750e32d7d607d1ec449.

То есть в условии задачи должна оговариваться четверть, в которой находится угол.

tgα = 1/√3, α находится в 1 четверти (0

Синус через тангенс

Здесь также понадобятся тригонометрические тождества.

Можно пойти двумя путями:

1) Выразить котангенс через тангенс и найти синус по котангенсу.

как узнать синус зная тангенс. 21a96d53bcf2c3dc3a1cffa5b81682d7. как узнать синус зная тангенс фото. как узнать синус зная тангенс-21a96d53bcf2c3dc3a1cffa5b81682d7. картинка как узнать синус зная тангенс. картинка 21a96d53bcf2c3dc3a1cffa5b81682d7.

2) Найти косинус по тангенсу, а затем воспользоваться основным тригонометрическим тождеством.

как узнать синус зная тангенс. 86f246f1a3c02f5112cac2be01be0b9f. как узнать синус зная тангенс фото. как узнать синус зная тангенс-86f246f1a3c02f5112cac2be01be0b9f. картинка как узнать синус зная тангенс. картинка 86f246f1a3c02f5112cac2be01be0b9f.

как узнать синус зная тангенс. 5a32ded0f112e1cce744d5ad2ee054b5. как узнать синус зная тангенс фото. как узнать синус зная тангенс-5a32ded0f112e1cce744d5ad2ee054b5. картинка как узнать синус зная тангенс. картинка 5a32ded0f112e1cce744d5ad2ee054b5.

tgα = √3, α находится в 1 четверти (0

как узнать синус зная тангенс. 469202 42. как узнать синус зная тангенс фото. как узнать синус зная тангенс-469202 42. картинка как узнать синус зная тангенс. картинка 469202 42.

В алгебре и геометрии очень часто при решении задач используются тригонометрические формулы, которые чаще называют тригонометрическими тождествами. Из любого тригонометрического тождества несложно вывести новую формулу, необходимую для нахождения одной из величин, входящих в его состав.

Для того, чтобы найти косинус угла, зная его тангенс, возьмем тригонометрическое тождество:

как узнать синус зная тангенс. 29aa2fa557ffb26ba95ba1a2ba22fb69. как узнать синус зная тангенс фото. как узнать синус зная тангенс-29aa2fa557ffb26ba95ba1a2ba22fb69. картинка как узнать синус зная тангенс. картинка 29aa2fa557ffb26ba95ba1a2ba22fb69.

Из данного тождества выводим новую формулу для вычисления косинуса:

как узнать синус зная тангенс. e63f4eec755a29d389f0ab0859c827ea. как узнать синус зная тангенс фото. как узнать синус зная тангенс-e63f4eec755a29d389f0ab0859c827ea. картинка как узнать синус зная тангенс. картинка e63f4eec755a29d389f0ab0859c827ea.

Не забываем, что косинус может принимать как положительные, так и отрицательные значения в зависимости от четверти нахождения угла.

Для вычисления синуса угла через его тангенс можно действовать по-разному.

Например, вычислить по выведенной выше формуле косинус угла, а затем воспользоваться еще одним тригонометрическим тождеством и вывести из него формулу для вычисления синуса угла:

как узнать синус зная тангенс. 9699baa17336bd44f5c5e22994709dba. как узнать синус зная тангенс фото. как узнать синус зная тангенс-9699baa17336bd44f5c5e22994709dba. картинка как узнать синус зная тангенс. картинка 9699baa17336bd44f5c5e22994709dba.

довольно часто при решении уравнений и упрощении тригонометрических выражений требуется найти синус или косинус через тангенс.

Для этого существуют специальные формулы. Итак, для нахождения косинуса нужно извлечь квадратный корень из дроби в числителе которой единица, а в знаменателе выражение единица плюс тангенс в квадрате.

А вот для того, чтобы найти синус нужно извлечь квадратный корень из выражения один минус дробь

в числителе которой единица, а в знаменателе выражение единица плюс тангенс в квадрате.

Но нужно обратить на знак синуса и косинуса, в зависимости от того в какой четверти находится угол. И если синус находим, то в 3 и 4 четвертях он будет отрицателен, а если косинус, то во второй и третьей.

Источник

Нахождение значений синуса, косинуса, тангенса и котангенса

Для того, чтобы определить значение угла α, необходимо воспользоваться подходящей функции из тригонометрии. Во время решения задач постоянно возникает необходимость в том, чтобы узнать значение углов. Для некоторых углов можно найти точные значения, для других сложно определить точную цифру и можно вывести только приблизительное значение.

В этой статье мы подробно поговорим о функциях из тригонометрии. Мы не только расскажем о свойствах синуса, тангенса и других функций, но и узнаем, как правильно вычислять значения для каждого отдельного случая.

Рассмотрим подробно каждый случай.

Приближенное число для каждой из известных функций можно найти по определению. Для одних можно указать точные значения, для других – только приблизительные.

Если для примера не подходит ни одно из приведенных выше решений, можно найти приближенное значение. В этом вам помогут таблицы основных тригонометрических функций, которые легко можно найти.

Изобразим данные формулы на рисунке:

как узнать синус зная тангенс. image002 w2nVsgB. как узнать синус зная тангенс фото. как узнать синус зная тангенс-image002 w2nVsgB. картинка как узнать синус зная тангенс. картинка image002 w2nVsgB.

Для каждой группы соответствуют свои значения.

как узнать синус зная тангенс. image009 9tg7iXN. как узнать синус зная тангенс фото. как узнать синус зная тангенс-image009 9tg7iXN. картинка как узнать синус зная тангенс. картинка image009 9tg7iXN.

Чем точнее выполняется чертеж, тем более точными будут значения для каждого индивидуального случая. Выполнять вычисления удобно только в теории, так как на практике довольно сложно и долго выполнять рисунки.

Линии тригонометрических функций

Линии тригонометрических функций – это линии, которые изображаются вместе с единичной окружностью. Они имеют точку отсчета и единичный отрезок, которая равна единице в координатной системе. Они используются для наглядного изображения значений.

Рассмотрим их на подробном рисунке

как узнать синус зная тангенс. image014. как узнать синус зная тангенс фото. как узнать синус зная тангенс-image014. картинка как узнать синус зная тангенс. картинка image014.

Для тридцати-, сорокопяти-, шестидесятиградусных углов мы имеем определенные значения. Чтобы найти их, можно воспользоваться правилами о прямоугольном треугольнике с острыми углами. Для этого используется теорема Пифагора.

Тангенс можно найти по формуле, которая предполагает деление противолежащего катета на прилежащий. Котангенс находим по такой же схеме – делим прилежащий катет на противолежащий.

Теперь мы сможем найти значения для основных тригонометрических функций. Используем формулу, которая предполагает деление длин соответствующих сторон рассматриваемого треугольника.

Полученные значения для тридцати-, сорокапяти-, шестидесятиградусных углов будут использоваться для решения различных задач. Запишите их – они часто будут использоваться. Для удобства можно использовать таблицу значений.

Проиллюстрируем значения для тридцати-, сорокапяти-, шестидесятиградусных углов с использованием окружности и линий.

как узнать синус зная тангенс. image026. как узнать синус зная тангенс фото. как узнать синус зная тангенс-image026. картинка как узнать синус зная тангенс. картинка image026.

Значения основных функций тригонометрии

Для того, чтобы закрепить полученные знания, рассмотрим их на подробном примере

Сведение к углу

Для того, чтобы решать задачи было намного проще, при нахождении значений переходите к углам из интервала от 0 до 90 ° с помощью формул приведения, если угол не находится в этих пределах.

Использование формул

Раннее мы рассмотрели подробности, касающиеся нахождению значений основных функций с использованием формул тригонометрии. Для того, чтобы определить значение для определенного угла, используйте формулы и значения основных функций для известных углов.

Частные случаи

Тригонометрия – довольно сложная наука. Далеко не всегда можно найти формулы, используемые для вычисления. Существует множество уравнений, которые не поддаются стандартным формулам. Некоторые значения очень сложно обозначить точной цифрой. Это не так просто, как может показаться.

Однако точные значения не всегда нужны. Хватает и тех, что не претендуют на высокую точность. Благодаря существующим таблицам, которые можно найти в математических учебниках, можно найти любое приближенное значение основных функций. Благодаря справочным материалам вычислять формулы будет намного проще. В таблицах содержатся значения с высокой точностью.

Источник

как найти тангенс, если известен синус?

нужно для этого знать
1)тангенс отнашения синуса угла к косинусу,
2)синус квадрат плюс косинус квадрат равно 1

Синус разделить на косинус.
Косинус равен единице минус синус.

с помощью основного тригонометрического закона находишь косинус.
Косинус = корень квадратный из (1-синус (в квадрате) *значение угла)

Затем тангенс
Тангенс = синус/косинус

Для того, чтобы выразить тангенс угла через синус, нужно вспомнить геометрическое определение тангенса. Итак, тангенсом острого угла в прямоугольном треугольнике, называют отношение противолежащего катета к прилежащему.
2

С другой стороны, рассмотрите декартову систему координат, на которой начерчена единичная окружность с радиусом R=1, и центром О в начале координат. Примите поворот против часовой стрелки, как положительный, а в обратную сторону отрицательный.
3

Отметьте некую точку M на окружности. Из нее опустите перпендикуляр на ось Ох, назовите ее точкой N. Получился треугольник OMN, у которого угол ONM является прямым.
4

Теперь рассмотрите острый угол MON, по определению синуса и косинуса острого угла в прямоугольном треугольнике
sin(MON) = MN/OM, cos(MON) = ON/OM. Тогда MN= sin(MON)*OM, а ON = cos(MON)*OM.
5

Вернувшись к геометрическому определению тангенса (tg(MON) = MN/ON), подставьте полученные выше выражения. Тогда:
tg(MON) = sin(MON)*OM/cos(MON)*OM, сократите OM, тогда tg(MON) = sin(MON)/cos(MON).
6

Из основного тригонометрического тождества (sin^2(x)+cos^2(x)=1) выразите косинус, через синус:

Подставьте это выражение в полученное на шаге 5. Тогда tg(MON) = sin(MON)/(1-sin^2(MON))^0,5.
7

Иногда существует потребность в вычисление тангенса двойного и половинчатого угла. Тут тоже выведены соотношения:

Также возможно выразить квадрат тангенса через двойной угол косинуса, либо синус.

tg^2(x) = (1-cos(2x))/(1+cos(2x)) = (1-1+2*sin^2(x))/(1+1-2*sin^2(x)) = (sin^2(x))/(1-sin^2(x)).

Источник

Тригонометрия простыми словами

Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».

Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).

Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.

как узнать синус зная тангенс. triangle in round. как узнать синус зная тангенс фото. как узнать синус зная тангенс-triangle in round. картинка как узнать синус зная тангенс. картинка triangle in round.

Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.

как узнать синус зная тангенс. round tg ctg. как узнать синус зная тангенс фото. как узнать синус зная тангенс-round tg ctg. картинка как узнать синус зная тангенс. картинка round tg ctg.

Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.

Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.

Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.

Значения тригонометрических функций
для первой четверти круга (0° – 90°)

Принцип повтора знаков тригонометрических функций

как узнать синус зная тангенс. sign func. как узнать синус зная тангенс фото. как узнать синус зная тангенс-sign func. картинка как узнать синус зная тангенс. картинка sign func.

Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.

В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.

как узнать синус зная тангенс. angles. как узнать синус зная тангенс фото. как узнать синус зная тангенс-angles. картинка как узнать синус зная тангенс. картинка angles.

Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.

Тригонометрический круг

Углы в радианах

Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.

Источник

Алгебра

План урока:

Синус и косинус угла на единичной окружности

Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:

С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что

ВС = АВ•sinα = 5•0,8 = 4

Если известно, что cosα = 0,6, то мы сможем найти и второй катет:

АС = АВ•cosα = 5•0,6 = 3

Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:

tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)

Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:

Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:

Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле

Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда

АВ = sinα•ОА = sinα•1 = sinα

С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или

Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:

Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:

хА = ОВ = cosα•ОА = cosα•1 = cosα

то есть координата хА равна cos α:

Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.

Таким образом, нам удалось дать новое определение синусу и косинусу угла:

Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 1 I и II четверть

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *