как узнать сколько ребер в графе
Число ребер графа
Когда мы ввели понятие графа как своего рода списка уже проведенных игр, мы предполагали, что каждые две команды играют друг с другом, самое большее, по одному разу. Может, однако, случиться, что каждые две команды играют между собой и по нескольку игр, как это бывает, например, в футболе. Мы можем отразить это на графе, соединяя соответствующие пары вершин несколькими ребрами (рис. 15). В этом случае говорят, что граф имеет кратные ребра.
Рис. 15. Граф с 5 кратными ребрами
Вместо того чтобы на самом деле проводить несколько ребер между одними и теми же вершинами А и В, можно провести всего одно ребро, приписав ему кратность, показывающую сколько раз надо считать это ребро (рис. 16). На карте дорог, конечно, проводят каждую дорогу в отдельности.
Рис. 16. Экономичное изображение графа с ребром кратности 4
В каждой неизолированной вершине А некоторого графа G имеется одно или несколько ребер, для которых А служит концом; все эти ребра называются инцидентными вершине А. Число таких ребер обычно обозначают через р(А) и называют степенью вершины А.
Так, для графа G, изображенного на рис. 1, степени вершин таковы:
Довольно часто приходится находить число ребер графа. Их можно, конечно, пересчитать непосредственно, но проще сосчитать число ребер в каждой вершине отдельно и сложить все эти числа. При этом каждое ребро будет сосчитано дважды — соответственно двум вершинам, которые оно соединяет, поэтому общее число ребер графа будет равно половине этой суммы. Так, например, число ребер графа G с рис. 1 равно
Чтобы сформулировать соответствующий результат в общем виде, предположим, что некоторый граф G имеет n вершин
степени которых соответственно равны
Тогда число N ребер графа G, как показывает наше рассуждение, равно
Из этой формулы видно, что для любого графа сумма степеней всех его вершин
(2)
является числом четным, поскольку она равна удвоенному числу ребер.
На графе можно различать два типа вершин: нечетные вершиныА’, степени р(А’) которых нечетны, и четные вершиныА», имеющие четные степени р(А»). Так, в случае графа рис. 1 вершины А, В, D, Е являются нечетными, а вершины С и F четны. Если вершины расположить в алфавитном порядке, то сумма (2) будет равна
Эта сумма четна, так как число ее нечетных слагаемых равно четырем. Вообще, для того чтобы узнать, будет ли сумма целых чисел четной или нечетной, мы можем не рассматривать четные слагаемые; сумма будет четной или нечетной в зависимости от четности или нечетности числа ее нечетных слагаемых. А так как сумма (2) всегда является четной, мы приходим к следующему результату.
Теорема 1. Число нечетных вершин любого графа четно.
Это утверждение справедливо и в случае, когда граф вовсе не содержит нечетных вершин, так как 0 является числом четным.
Бывают графы, у которых степени всех вершин одинаковы:
Такой граф называется однородным графомстепени r; в силу формулы (1) число его ребер равно
где n – число вершин этого графа. Граф, изображенный на рис. 17 является однородным, его степень равна трем; граф, изображенный на рис. 18 также однородный, и его степень равна четырем.
Рис. 17. Однородный граф степени r = 3
Рис. 18. Однородный граф степени r = 4
В полном графе Un с n вершинами из каждой вершины выходит n – 1 ребер, ведущих к каждой из остальных n – 1 вершин; таким образом, Un является однородным графомстепени n – 1. Нуль-граф 0 n тоже является однородным по той простой причине, что для каждой его вершины р(А)=0.
Дата добавления: 2015-09-18 ; просмотров: 1346 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
«Степень вершины и подсчет числа ребер графа». 7-й класс
Класс: 7
Презентация к уроку
Профиль класса: общеобразовательный.
Тип урока: изучение и первичное закрепление новых знаний.
Давайте вспомним основные понятия теории графов. Для этого проведем разминку по типу незаконченного предложения (Презентация, сл.: 2, 3, 4). Каждый ученик имеет карточки с пропущенными словами в предложение. Учитель зачитывает предложение, останавливаясь перед пропущенным словом, и выбирает ученика, который в свою очередь должен поднять карточку. Далее этот ученик читает дальше предложение, также останавливаясь перед пропущенным словом, и уже сам выбирает одноклассника для ответа и т. д. по цепочке.
Проверим в классе решение домашней задачи (Презентация, сл.: 5, 6, 7). Один ученик выходит к доске и рисует граф. Далее мы вместе проверяем ребра (дороги между городами), считаем количество выходящих ребер из каждой вершины и смотрим связи между городами.
Сегодня на уроке мы продолжим изучение графов, познакомимся с понятием “степень вершины графа” и сформулируем определение связности графа (обратим внимание на наш граф из домашнего задания и определим, является ли он связным или нет и почему). Рассмотрим утверждение о количестве ребер графа, и проверим в соответствие с этим утверждением, правильно ли мы посчитали количество ребер графа в домашней задаче. И рассмотрим теорему о четности числа нечетных вершин графа.
Количество ребер, выходящих из одной вершины, называют степенью этой вершины. Для петли будем считать, что это ребро выходит из вершины дважды (Презентация, сл. 8).
Запишем определение в рабочую тетрадь и зарисуем представленный граф, для данного графа посчитаем степень каждой вершины. Ребята смотрят на слайд и работают самостоятельно, далее вслух зачитаем степень каждой вершины.
Вершина, имеющая четную степень, называется четной вершиной, соответственно, вершина, имеющая нечетную степень, называется нечетной вершиной (Презентация, сл. 9).
Запишем определение в тетрадь и перечислим через запятую сначала четные вершины, а потом нечетные вершины для уже нарисованного графа. Проверим задание вслух.
Количество ребер графа равно половине суммы степеней его вершин. Пусть граф имеет n вершин, тогда число ребер равно:
Запишем утверждение в рабочую тетрадь и посчитаем количество ребер графа в домашней задачке. Проверим ответ в классе. Рассмотрим задачу и ее решение на подсчет числа ребер графа без построения. (Презентация, сл. 11).
Сформулируем теорему о количестве вершин нечетной степени любого графа и запишем формулировку в рабочую тетрадь. (Презентация, сл. 12).
Теорема. Количество вершин нечетной степени любого графа всегда четно.
Доказательство: Количество ребер графа равно половине суммы степеней его вершин.
Так как количество ребер должно быть целым числом, то сумма степеней вершин должна быть четной.
А это возможно только в том случае, если граф содержит четное число нечетных вершин.
Разберем доказательство и проверим теорему на нашей домашней задачке.
Рассмотрим несколько задач.
Задача. В государстве 50 городов, из каждого города выходит 4 дороги. Сколько всего дорог в государстве.
Решение. Подсчитаем общее количество выходящих дорог из городов: 50 * 4 = 200. Однако, мы понимаем, что при подсчете каждая дорога посчитана 2 раза – она выходит из одного города и входит в другой. Значит всего дорог в два раза меньше, т.е. 100.
Задача. В классе 30 человек. Может ли быть так, что 9 человек имеют по 3 друга, 11 – по 4 друга, а 10 – по 5 друзей?
Ответ. Нет (теорема о четности числа нечетных вершин).
Сегодня мы с вами познакомились с новыми определениями, связанными с понятием графа, рассмотрели утверждение, которое помогает быстро подсчитывать число ребер графа, и сформулировали теорему, которая значительно упрощает решение многих задач. В частности, поучительная сторона этой теоремы заключается в исследовании и ответе на вопрос, возможно или нет решение данной задачи, прежде чем приступать за ее решение.
В качестве домашнего задания ученики получать карточки с тремя задачами (Презентация, сл. 13).
Степени вершин и подсчет числа ребер графа
Введение
Графы – замечательные математические объекты, с их помощью можно решать очень много различных, внешне не похожих друг на друга задач. В математике существует целый раздел – теория графов, который изучает графы, их свойства и применение. Мы же обсудим только самые основные понятия, свойства графов и некоторые способы решения задач.
Понятие графа
Рассмотрим две задачи.
Решение: Нарисуем схему условия: планеты изобразим точками, а маршруты ракет – линиями.
Теперь сразу видно, что долететь с Земли до Марса нельзя.
Задача 2. Доска имеет форму двойного креста, который получается, если из квадрата 4×4 убрать угловые клетки.
Решение: Занумеруем последовательно клетки доски:
А теперь с помощью рисунка покажем, что такой обход таблицы, как указано в условии, возможен:
Мы рассмотрели две непохожие задачи. Однако решения этих двух задач объединяет общая идея – графическое представление решения. При этом и картинки, нарисованные для каждой задачи, оказались похожими: каждая картинка – это несколько точек, некоторые из которых соединены линиями.
Такие картинки и называются графами. Точки при этом называются вершинами, а линии – ребрами графа. Заметим, что не каждая картинка такого вида будет называться графом. Например.если вас попросят нарисовать в тетради пятиугольник, то такой рисунок графом не будет. Будем называть что рисунок такого вида, как в предыдущих задачах, графом, если есть какая-то конкретная задача для которой такой рисунок построен.
Другое замечание касается вида графа. Попробуйте проверить, что граф для одной и той же задачи можно нарисовать разными способами; и наоборот для разных задач можно нарисовать одинаковые по виду графы. Здесь важно лишь то, какие вершины соединены друг с другом, а какие – нет. Например, граф для задачи 1 можно нарисовать по-другому:
Такие одинаковые, но по-разному нарисованные графы, называются изоморфными.
Степени вершин и подсчет числа ребер графа
Запишем еще одно определение: Степенью вершины графа называется количество выходящих из нее ребер. В связи с этим, вершина, имеющая четную степень, называется четной вершиной, соответственно, вершина, имеющая нечетную степень, называется нечетной вершиной.
С понятием степени вершины связана одна из основных теорем теории графов –теорема о честности числа нечетных вершин. Докажем ее мы немного позднее, а сначала для иллюстрации рассмотрим задачу.
Решение: Допустим, что такое соединение телефонов возможно. Тогда представим себе граф, в котором вершины обозначают телефоны, а ребра – провода, их соединяющие. Подсчитаем, сколько всего получится проводов. К каждому телефону подключено ровно 5 проводов, т.е. степень каждой вершины нашего графа – 5. Чтобы найти число проводов, надо просуммировать степени всех вершин графа и полученный результат разделить на 2 (т.к. каждый провод имеет два конца, то при суммировании степеней каждый провод будет взят 2 раза). Но тогда количество проводов получится разным . Но это число не целое. Значит наше предположение о том, что можно соединить каждый телефон ровно с пятью другими, оказалось неверным.
Ответ. Соединить телефоны таким образом невозможно.
Теорема: Любой граф содержит четное число нечетных вершин.
Доказательство: Количество ребер графа равно половине суммы степеней его вершин. Так как количество ребер должно быть целым числом, то сумма степеней вершин должна быть четной. А это возможно только в том случае, если граф содержит четное число нечетных вершин.
Связность графа
Есть еще одно важное понятие, относящееся к графам – понятие связности.
Граф называется связным, если излюбые две его вершины можно соединить путем, т.е. непрерывной последовательностью ребер. Существует целый ряд задач, решение которых основано на понятии связности графа.
Задача 4. В стране Семерка 15 городов, каждый из городов соединен дорогами не менее, чем с семью другими. Докажите, что из каждого города модно добраться в любой другой.
Доказательство: Рассмотрим два произвольных А и В города и допустим, что между ними нет пути. Каждый из них соединен дорогами не менее, чем с семью другими, причем нет такого города, который был бы соединен с обоими рассматриваемыми городами (в противном случае существовал бы путь из A в B). Нарисуем часть графа, соответствующую этим городам:
Теперь явно видно, что мы получили не менее различных 16 городов, что противоречит условию задачи. Значит утверждение доказано от противного.
Если принять во внимание предыдущее определение, то утверждение задачи можно переформулировать и по-другому: “Доказать, что граф дорог страны Семерка связен.”
Теперь вы знаете, как выглядит связный граф. Несвязный граф имеет вид нескольких “кусков”, каждый из которых – либо отдельная вершина без ребер, либо связный граф. Пример несвязного графа вы видите на рисунке:
Каждый такой отдельный кусок называется компонентой связности графа. Каждая компонента связности представляет собой связный граф и для нее выполняются все утверждения, которые мы доказали для связных графов. Рассмотрим пример задачи, в которой используется компонента связности:
Задача 5. В Тридевятом царстве только один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов, – по 20. Докажите, что из столицы можно долететь в город Дальний.
Доказательство: Понятно, что если нарисовать граф ковролиний Царства, то он может быть несвязным. Рассмотрим компоненту связности, которая включает в себя столицу Царства. Из столицы выходит 21 ковролиния, а из любых других городов, кроме города Дальний – по 20, поэтому, чтобы выполнялся закон о четном числе нечетных вершин необходимо, чтобы и город Дальний входил в эту же самую компоненту связности. А так как компонента связности – связный граф, то из столицы существует путь по ковролиниям до города Дальний, что и требовалось доказать.
Графы Эйлера
Вы наверняка сталкивались с задачами, в которых требуется нарисовать какую-либо фигуру не отрывая карандаш от бумаги и проводя каждую линию только один раз. Оказывается, что такая задача не всегда разрешима, т.е. существуют фигуры, которые указанным способом нарисовать нельзя. Вопрос разрешимости таких задач также входит в теорию графов. Впервые его исследовал в 1736 году великий немецкий математик Леонард Эйлер, решая задачу о Кенигсбергских мостах. Поэтому графы, которые можно нарисовать указанным способом, называются Эйлеровыми графами.
Решение. Если мы будем рисовать граф так, как сказано в условии, то в каждую вершину, кроме начальной и конечной, мы войдем столько же раз, сколько выйдем из нее. То есть все вершины графа, кроме двух должны быть четными. В нашем же графе имеется три нечетные вершины, поэтому его нельзя нарисовать указанным в условии способом.
Сейчас мы доказали теорему об Эйлеровых графах:
Теорема: Эйлеров граф должен иметь не более двух нечетных вершин.
И в заключение – задача о Кенигсбергских мостах.
Задача 7. На рисунке изображена схема мостов города Кенигсберга.
Можно ли совершить прогулку так, чтобы пройти по каждому мосту ровно 1 раз?
3. Задачи к теме “Графы”
Понятие графа.
1. На квадратной доске 3×3 расставлены 4 коня так, как показано на рис.1. Можно ли сделав несколько ходов конями, переставить их в положение, показанное на рис.2?
Рис. 1 | Рис. 2 |
Решение. Занумеруем клетки доски, как показано на рисунке:
Каждой клетке поставим в соответствие точку на плоскости и, если из одной клетки можно попасть в другую ходом шахматного коня, то соответствующие точки соединим линией. Исходная и требуемая расстановки коней показаны на рисунках:
При любой последовательности ходов конями порядок их следования, очевидно, измениться не может. Поэтому переставить коней требуемым образом невозможно.
Решение. Поставив в соответствие каждому городу точку и соединив точки линией, если сумма цифр делится на 3, получим граф, в котором цифры 3, 5, 9 связаны между собой, но не связаны с остальными. Значит долететь из города 1 в город 9 нельзя.
Степени вершин и подсчет числа ребер графа
Введем еще одно определение: Степенью вершины графа называется количество выходящих из нее ребер. В связи с этим, вершина, имеющая четную степень, называется четной вершиной, соответственно, вершина, имеющая нечетную степень, называется нечетной вершиной.
С понятием степени вершины связана одна из основных теорем теории графов –теорема о честности числа нечетных вершин. Докажем ее мы немного позднее, а сначала для иллюстрации рассмотрим задачу.
Решение: Допустим, что такое соединение телефонов возможно. Тогда представим себе граф, в котором вершины обозначают телефоны, а ребра – провода, их соединяющие. Подсчитаем, сколько всего получится проводов. К каждому телефону подключено ровно 5 проводов, т.е. степень каждой вершины нашего графа – 5. Чтобы найти число проводов, надо просуммировать степени всех вершин графа и полученный результат разделить на 2 (т.к. каждый провод имеет два конца, то при суммировании степеней каждый провод будет взят 2 раза). Но тогда количество проводов получится разным 15×5/2=37,5. Но это число не целое. Значит наше предположение о том, что можно соединить каждый телефон ровно с пятью другими, оказалось неверным.
Ответ. Соединить телефоны таким образом невозможно.
Теорема: Любой граф содержит четное число нечетных вершин.
Доказательство: Количество ребер графа равно половине суммы степеней его вершин. Так как количество ребер должно быть целым числом, то сумма степеней вершин должна быть четной. А это возможно только в том случае, если граф содержит четное число нечетных вершин.
Связность графа
Есть еще одно важное понятие, относящееся к графам – понятие связности.
Граф называется связным, если из любые две его вершины можно соединить путем, т.е. непрерывной последовательностью ребер. Существует целый ряд задач, решение которых основано на понятии связности графа.
Задача 4. В стране С 15 городов, каждый из городов соединен дорогами не менее, чем с семью другими. Докажите, что из каждого города можно добраться в любой другой.
Доказательство: Рассмотрим два произвольных А и В города и допустим, что между ними нет пути. Каждый из них соединен дорогами не менее, чем с семью другими, причем нет такого города, который был бы соединен с обоими рассматриваемыми городами (в противном случае существовал бы путь из A в B). Нарисуем часть графа, соответствующую этим городам:
Теперь явно видно, что мы получили не менее различных 16 городов, что противоречит условию задачи. Значит утверждение доказано от противного.
Если принять во внимание предыдущее определение, то утверждение задачи можно переформулировать и по-другому: “Доказать, что граф дорог страны С связен.”
Теперь вы знаете, как выглядит связный граф. Несвязный граф имеет вид нескольких “кусков”, каждый из которых – либо отдельная вершина без ребер, либо связный граф. Пример несвязного графа вы видите на рисунке:
Каждый такой отдельный кусок называется компонентой связности графа. Каждая компонента связности представляет собой связный граф и для нее выполняются все утверждения, которые мы доказали для связных графов. Рассмотрим пример задачи, в которой используется компонента связности:
Задача 5. В государстве Н только один вид транспорта – поезд. Из столицы выходит 21 железнодорожная колея, из города Дальний – одна, а из всех остальных городов, – по 20. Докажите, что из столицы можно доехать в город Дальний.
Доказательство: Понятно, что если нарисовать граф ж/д путей государства Н, то он может быть несвязным. Рассмотрим компоненту связности, которая включает в себя столицу государства. Из столицы выходит 21 ж/д колея, а из любых других городов, кроме города Дальний – по 20, поэтому, чтобы выполнялся закон о четном числе нечетных вершин необходимо, чтобы и город Дальний входил в эту же самую компоненту связности. А так как компонента связности – связный граф, то из столицы существует путь по ж/д путям до города Дальний, что и требовалось доказать.
Графы Эйлера
Вы наверняка сталкивались с задачами, в которых требуется нарисовать какую-либо фигуру не отрывая карандаш от бумаги и проводя каждую линию только один раз. Оказывается, что такая задача не всегда разрешима, т.е. существуют фигуры, которые указанным способом нарисовать нельзя. Вопрос разрешимости таких задач также входит в теорию графов. Впервые его исследовал в 1736 году великий немецкий математик Леонард Эйлер, решая задачу о Кенигсбергских мостах. Поэтому графы, которые можно нарисовать указанным способом, называются Эйлеровыми графами.
Решение. Если мы будем рисовать граф так, как сказано в условии, то в каждую вершину, кроме начальной и конечной, мы войдем столько же раз, сколько выйдем из нее. То есть все вершины графа, кроме двух должны быть четными. В нашем же графе имеется три нечетные вершины, поэтому его нельзя нарисовать указанным в условии способом.
Сейчас мы доказали теорему об Эйлеровых графах:
Теорема: Эйлеров граф должен иметь не более двух нечетных вершин.
И в заключение – задача о Кенигсбергских мостах.
Задача 7. На рисунке изображена схема мостов города Кенигсберга.
Можно ли совершить прогулку так, чтобы пройти по каждому мосту ровно 1 раз?
Алгоритм Дейкстры отыскания кратчайшего пути на графе.
Вершины графа могут представлять собой этапы решения задач при различных вариантах, а соединяющие их дуги направления решения. Если при этом рассматривать длительность каждого этапа решения, то будем иметь нагруженный ориентированный граф.
Одним из способов решения данной задачи является алгоритм Э. Дейкстры, изобретённый нидерландским учёным Эдсгером Дейкстрой в 1959 году, который покажем на примере.
Рассмотрим выполнение алгоритма на примере графа, показанного на рисунке. Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.
Кружками обозначены вершины, линиями — пути между ними (рёбра графа). В кружках обозначены номера вершин, над рёбрами обозначена их «цена» — длина пути. В процессе поиска минимального пути всем вершинам графа приписываются метки (числа), которые подразделяются на постоянные (они подчеркиваются) и временные. Метку вершины будем обозначать . Процесс вычисления меток для наглядности представим в виде таблицы.
Шаг\вершины | ||||||
Первый шаг | ||||||
Второй шаг | ||||||
Третий шаг | ||||||
Четвертый шаг | ||||||
Пятый шаг |
В столбцах таблицы указываются метки вершин, которые они имеют в процессе работы алгоритма. Так в первом столбце указаны метки вершины 1, во втором метки второй вершины и т.д. Таким образом за каждой вершиной закреплен свой столбец.
Для восстановления кратчайшего пути рядом с каждой подчеркнутой меткой в скобках указывается вершина предыдущего шага с постоянной меткой. Если таких вершин несколько, выбирается любая из них, поскольку нужно найти один кратчайший путь. При указании всех таких вершин перебором получаются все кратчайшие пути.
В процессе работы начальные вершины меняются, для их обозначения будем использовать общий символ (н).
На первом шаге вершине 1 приписывается начальная постоянная метка 0 (она подчеркнута), а всем остальным вершинам временные метки . На каждом следующем шаге вершине , соединенной дугой с начальной вершиной (н), приписывается метка, равная минимальному из чисел и , где -прежняя метка -ой вершины, а -длина дуги, соединяющей вершину (н) с вершиной .
Рассмотрим второй шаг алгоритма Дейкстры для нашего примера. Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6. Первый по очереди сосед вершины 1 — вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме значения метки вершины 1 и длины ребра, идущего из 1-й в 2-ю, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2, бесконечности, поэтому новая метка 2-й вершины равна 7. Аналогичную операцию проделываем с двумя другими соседями 1-й вершины — 3-й и 6-й. Полученные соответственно значения 9 и 14 заносим в столбцы 3 и 6 таблицы. Из полученных значений выбираем минимальное 7 его подчеркиваем и берем вершину 2 за начальную.
Третий шаг. Пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.Первый (по порядку) сосед вершины 2 — вершина 1. Но она уже посещена, поэтому с 1-й вершиной ничего не делаем. Следующий сосед вершины 2 — вершина 3, так как имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9, а это меньше 17, поэтому метка не меняется. Ещё один сосед вершины 2 — вершина 4. Если идти в неё через 2-ю, то длина такого пути будет равна сумме кратчайшего расстояния до 2-й вершины и расстояния между вершинами 2 и 4, то есть 22 (7 + 15 = 22). Поскольку 22