как узнать скорость поезда
Формула нахождения значений скорости, времени и расстояния
С древних времен людей беспокоит мысль о достижении сверх скоростей, так же как не дают покоя раздумья о высотах, летательных аппаратах. На самом деле это два очень сильно связанных между собой понятия. То, насколько быстро можно добраться из одного пункта в другой на летательном аппарате в наше время, зависит полностью от скорости. Рассмотрим же способы и формулы расчета этого показателя, а также времени и расстояния.
Как же рассчитать скорость?
На самом деле, рассчитать ее можно несколькими способами:
Как видите, в формуле первого класса средней школы нет ничего сложного. Подставив соответствующие значения вместо буквенных обозначений, можно рассчитать быстроту передвижения объекта. Например, найдем значение скорости передвижения автомобиля, если он проехал 100 км за 1 час 30 минут. Сначала требуется перевести 1 час 30 минут в часы, так как в большинстве случаев единицей измерения рассматриваемого параметра считается километр в час (км/ч). Итак, 1 час 30 минут равно 1,5 часа, потому что 30 минут есть половина или 1/2 или 0,5 часа. Сложив вместе 1 час и 0,5 часа получим 1,5 часа.
Теперь нужно подставить имеющиеся значения вместо буквенных символов:
v=100 км/1,5 ч=66,66 км/ч
Здесь v=66,66 км/ч, и это значение очень приблизительное (незнающим людям об этом лучше прочитать в специальной литературе), S=100 км, t=1,5 ч.
Таким нехитрым способом можно найти скорость через время и расстояние.
А что делать, если нужно найти среднее значение? В принципе, вычисления, показанные выше, и дают в итоге результат среднего значение искомого нами параметра. Однако можно вывести и более точное значение, если известно, что на некоторых участках по сравнению с другими скорость объекта была непостоянной. Тогда пользуются таким видом формулы:
Эту же формулу можно записать иначе, используя путь и время, за которое объект прошел этот путь:
Можно записать использовать и такой вид вычислений:
Но можно записать эту же формулу и в более точном варианте:
Таким образом, очень легко найти искомый параметр, используя данные выше формулы. Они очень просты, и как уже было указано, используются в начальных классах. Более сложные формулы базируются на этих же формулах и на тех же принципах построения и вычисления, но имеют другой, более сложный вид, больше переменных и разных коэффициентов. Это нужно для получения наиболее точного значения показателей.
Другие способы вычисления
Существую и другие способы и методы, которые помогают вычислить значения рассматриваемого параметра. В пример можно привести формулу вычисления мощности:
Способы вычисления расстояния и времени
Можно и наоборот, зная скорость, найти значение расстояния или времени. Например:
Таким образом вычисляется значение расстояния.
Или вычисляем значение времени, за которое пройдено расстояние:
Для нахождения средних значений этих параметров существует довольно много представлений как данной формулы, так и всех остальных. Главное, знать основные правила перестановок и вычислений. А еще главнее знать сами формулы и лучше наизусть. Если же запомнить не получается, тогда лучше записывать. Это поможет, не сомневайтесь.
Пользуясь такими перестановками можно с легкостью найти время, расстояние и другие параметры, используя нужные, правильные способы их вычисления.
И это еще не предел!
Видео
В нашем видео вы найдете интересные примеры решения задач на нахождение скорости, времени и расстояния.
Основные принципы определения скорости движения поезда
Определение скорости движения поезда определённой массы по участку пути можно выполнить аналитическим, графоаналитическим или численными методами.
Характеристику скорости движения поезда, изображённой на графике в функции от пути, называют кривой скорости движения.
Аналитический метод расчёта скорости движения поезда основан на определении равновесных скоростей на уклонах элементов продольного профиля. По сути, это задача, обратная определению веса состава. Для её решения необходимы исходные данные:
· тип локомотива, его масса, тяговая характеристика;
· характеристика и масса состава;
· подробные сведения об участке эксплуатации: план и профиль пути.
Скорость движения заданного поезда на заданном участке, крутизной , определяется решением уравнения при равномерном движении, когда
, (1)
где ‑ исходная зависимость.
Правая часть уравнения
,
включает: полное основное сопротивление локомотива
, Н;
полное основное сопротивление состава
Н;
дополнительные сопротивления от профиля пути
, Н.
В результате получается развёрнутая форма уравнения движения поезда на уклоне :
. (2)
Полученное уравнение следует решать относительно переменной и тогда на можно определить равновесную скорость . Затем, подставляя в уравнение значения следующих уклонов, будут получены равновесные скорости для этих уклонов.
Скорости установившегося равномерного движения на уклонах элементов продольного профиля называются равновесными.
По результатам расчётов для нескольких уклонов строится график зависимости , по которому находят величины равновесных скоростей для уклонов всех элементов участка пути.
Данная задача решается с помощью вычислительной техники.
Равновесные скорости для различных уклонов продольного профиля могут быть получены путём графоаналитического построения.
В начале решается уравнение , которое соответствует движению поезда на прямом горизонтальном пути. Здесь
,Н. (3)
В системе координат «сила – скорость» строится график тяговой характеристики заданного локомотива . В той же системе координат строится график полного основного сопротивления движению поезда на прямом горизонтальном пути. Точка пересечения графиков силы тяги и основного сопротивления даёт равновесную скорость движения принятой массы поезда на прямом горизонтальном пути.
Затем производится расчёт при движении поезда на затяжных подъёмах , на которых устанавливается равновесная скорость, при которой . Полученные значения служат для построения графиков в той же системе координат. Точки пересечений графиков дают значения равновесных скоростей для заданного поезда.
Пример 1.Поезд массой = 3000 т везёт тепловоз ТГ102, = 164 т. Состав состоит из четырёхосных гружёных вагонов массой т. Определить равновесные скорости для заданного профиля участка пути (таблица 1) и определить время хода от ст. А до ст. В.
№ элемента | |
, ‰ | -3 |
S, м |
Решение. 1. Из ПТР определяем значения тяговой характеристики (кгс) тепловоза ТГ102 и переводим их в систему СИ. По полученным значениям силы тяги в Н, строим график (рисунок 1) в функции скорости движения.
Рисунок 1. Графическое определение равновесных скоростей для уклонов и профиля пути.
2. Рассчитываем и сводим в таблицу (2а и 2б) значения: ; ; ,
где кН; кН.
3. Задаваясь разными значениями , определяем значения, и результаты расчёта также сводим в таблицы (2 а, б)
4. В тех же координатах на графике рисунок 1 (силы тяги) строим зависимости и , по которым находим равновесные скорости при различных значениях .
Равновесные скорости движения поезда в зависимости от величины уклона сводим в таблицу 3.
По полученным значениям равновесных скоростей в зависимости от уклонов строим график (рисунок 2), где по ординате откладываем значения уклонов (подъёмов), по оси абсцисс – скорость движения поезда. Этот график позволяет легко установить равновесные скорости на заданном участке пути (рисунок 3).
Определение равновесных скоростей в зависимости от уклонов и режима движения
км/ч | Н | Н/кН | Н | Н/кН | Н | Н 0 | 3‰ | 6‰ | 10‰ |
2,22 | 1,45 | ||||||||
2,78 | 1,8 | ||||||||
3,58 | 2,26 | ||||||||
4,62 | 2,88 | ||||||||
5,9 | 3,62 |
км/ч | Н/кН | Н | Н/кН | Н | Н | -2‰ |
2,76 | 1,45 | -14970 | ||||
3,4 | 1,8 | -3640 | ||||
4,32 | 2,26 | +11356 | ||||
5,52 | 2,88 | +31504 | ||||
7,0 | 3,62 | +55628 |
Результаты расчётов в таблице 2а и 2б для движения поезда в режимах тяги и выбега для разных уклонов пути нанесены на график (рисунок 1). Точки пересечений тяговой характеристики с характеристиками полных сопротивлений движению поезда на разных уклонах и есть искомые равновесные скорости.
Рисунок 2. Вспомогательная характеристика равновесных скоростей.
Координаты установленных равновесных скоростей сведены в таблицу 3 и по ним построена вспомогательная характеристика (рисунок 2) для построения графика равновесных скоростей на заданном участке эксплуатации (рисунок 3).
Рисунок 8.3. График равновесных (установившихся) скоростей движения поезда при движении по различным элементам профиля пути.
Координаты равновесных скоростей
Уклоны i*, ‰ | — 2 |
Равновесные скорости км/ч |
Допустимую скорость на спуске для поездов, имеющих расчётный тормозной коэффициент не менее 0,33, рекомендуется устанавливать в зависимости от крутизны спуска таблице 4.
Таблица 4 Допустимая скорость на спуске
Время движения поезда по каждому элементу профиля пути при равновесной (установившейся) скорости, мин, определяется по формуле
, мин. (4)
Чтобы определить время хода по перегону или участку, значения t на каждом элементе пути суммируют. Результаты таких расчётов сводят в таблицу 5.
Таблица 5 Время хода по перегону
Перегон | № Эле-мента | Длина элемента, км | Уклон ‰ | Равновесная скорость, км/ч | Время прохождения элемента, мин | Поправка на разгон и замедление, мин | Время хода по перегону, мин |
А | 1,3 | 0,94 | 2,0 | 2,94 | |||
— | 0,7 | — 3,0 | 0,46 | — | 3,4 | ||
— | 0,4 | 0,29 | — | 3,69 | |||
— | 2,5 | 9,0 | 6,0 | — | 9,69 | ||
— | 0,6 | 0,43 | — | 10,12 | |||
— | 3,0 | 6,0 | 5,29 | — | 15,41 | ||
В | 2,0 | 1,44 | 1,0 | 17,85 |
В действительности, поезд достигает равновесной скорости очень редко. На первом элементе идёт разгон и скорость поезда, как правила, не достигает установившегося значения, а на подъёмах скорость может меняться значительно.
Время tр, необходимое на разгон поезда после остановки и tт, затрачиваемое на торможение до остановки на раздельном пункте, учитывают, вводя соответствующие поправки. Поправка на разгон поезда tр в среднем принимается 2 мин, а на замедление поезда – 1 мин. Для электропоездов поправку на разгон принимают 0,5 мин, а на замедление – 0,4 мин.
Следовательно, время хода по перегону составит
, мин. (5)
Метод равновесных скоростей используют для оценки времени хода при предварительных прикидочных расчётах на участках, подлежащих модернизации или электрификации.
Логические задачи и головоломки
Можете ли вы определить скорость движения поезда по стуку колес?
Ответ: Стук слышен, когда колеса поезда наезжают на соединение рельс. Т.к. длина рельсы 15 м, то после нехитрых математических вычислений мы получим, что скорость поезда в км/ч равна 9 x [число толчков в минуту].
Комментарии
Допустим, количество толчков в минуту равно 50, это знчит, что за 1 мин. поезд проедит 50*15=750м=0,75км, т.е. за час получается 0,75*60=45км. По расчётам автора получается 9*50=450км/ч. Вывод: правильный ответ 0,9*[число толчков в минуту].
Стой всю ночь у жд дороги и слушай стук колес!!
Самым умным посвящается.
В реальной жизни почти не бывает задач, когда вам сразу сообщают весь необходимый набор данных. В некоторых случаях недостающие данные вы берете из своего багажа знаний, рискуя при этом ошибиться в данной конкретной ситуации.
Если у вас есть какое-то решение задачи, но в нем существуют пробелы именно в данных, то вы можете смело требовать информацию. В противном случае может получиться ситуация, когда заказчик либо скажет вам, что формула слишком громоздкая для практического применения, либо когда он скажет, что данные не соответствуют экспериментальным.
Прежде чем обсирать чужие решения, хорошенько подумайте, а не лоханетесь ли вы со своим ответом, когда к вам начнут также придираться ради стеба. В частности, хоть вы и отметили «двойной стук», но ваш ответ также не верен, ибо при прохождении стыков вагонов над стыками рельс раздается два двойных стука: «ту-дум—ту-дум».
По-моему вопрос задан не корректно.
Можете ли вы определить скорость движения поезда по стуку колес?
Нет, я не могу определить скорость движения поезда по стуку колес. И чего дальше. мой ответ «нет» и он верен
а по-моему вопрос корректно написан. Вопрос на самом деле предполагает не короткие ответы «да» или «нет», а развернутое решение. Вот Вы ответили нет, это ваш ответ, но он никому не интересен, здесь интересно знать ответ да, и разумеется за которым подразумевается какие-то комментарии. Можно так куда угодно зайти в инете и отвечать на вопросы ответом «нет», но можно это не делать. Так что здесь задают вопросы не для вашего ума, а придраться можно к чему угодно, лишь бы не отвечать на вопрос.
А кто сказал, что скорость надо измерять в метрах в секунду или км в час?
90 стуков в минуту тоже скорость
Даже в россии уже давно рельсы сваривают дргу с другом, и стуков от езды по рельсам нет, а по другим стукам издаваемым колёсам нельзя!
Интересно,где это в России сваривают рельсы друг с другом? Наверное,после их сварки,рельсы перестают подчиняться законам физики(не сужаются и не расшираются).
Нет, рельсы после сварки не перестают подчиняться законам физики, но тем не менее их сваривают уже давно и находятся они в напряжении, которое в зависимости от периода года меняется. А не сварные рельсы применяются разве что на подъездных путях там где даже нет системы ключевой зависимости.
Задачи на движение
Задачи на движение (скорость, время и расстояние) являются одной из основных типов задач по математике, которые должен уметь решать каждый школьник. В данной статье рассмотрены все типы задач на движение:
— простые задачи на скорость, время и расстояние;
— задачи на встречное и противоположное движение;
— задачи на движение в одном направлении (на сближение и удаление);
— решение задач на движение по реке.
Скорость, время и расстояние: определения, обозначения, формулы
скорость = расстояние: время — формула нахождения скорости;
время = расстояние: скорость — формула нахождения времени;
расстояние = скорость · время — формула нахождения расстояния.
Скорость – это расстояние, пройденное за единицу времени: за 1 секунду, за 1 минуту, за 1 час и так далее.
Пример обозначения: 7 км/ч (читается: семь километров в час).
Если весь путь проходится с одинаковой скоростью, то такое движение называется равномерным.
На сайте представлены калькуляторы онлайн, с помощью которых можно перевести скорость, время и расстояние в другие единицы измерения:
Примеры простых задач.
Задача 1.
Автомобиль проехал 180 км за 2 часа. Чему равна скорость автомобиля?
Решение: 180:2=90 (км/ч.)
Ответ: Скорость автомобиля равна 90 км/ч.
Задача 2.
Автобус проехал путь в 240 км со скоростью 80 км/ч. Сколько времени ехал автобус?
Решение: 240:80=3 (ч.)
Ответ: Автобус проехал 3 часа.
Задача 3.
Грузовик ехал 5 часов со скоростью 70 км/ч. Какое расстояние проехал грузовик за это время?
Решение: 70 · 3 = 350 (км)
Ответ: Грузовик за 5 часов проехал 350 км.
Задачи на встречное движение
В таких задачах два объекта движутся навстречу друг другу.
Задачи на встречное движение можно решать двумя способами:
1. Найти значения скорости, времени и расстояния для каждого объекта.
2. Найти скорость сближения объектов (как сумму их скоростей), общие время и расстояние. Скорость сближения — это расстояние, пройденное двумя объектами навстречу друг другу за единицу времени.
Задача 4.
Из двух пунктов навстречу друг другу одновременно выехали два поезда и встретились через 3 часа. Первый поезд ехал со скоростью 80 км/ч, а второй – со скоростью 70 км/ч. На каком расстоянии друг от друга находятся пункты?
Решение:
Первый способ. Найти расстояние, которое проехал каждый автобус, и сложить полученные данные:
80*3=240 (км) – проехал 1й автобус, 70*3=210 (км) – проехал 2й поезд,
240+210=450 (км) – проехали два поезда.
Второй способ. Найти скорость сближения поездов, то есть на сколько сокращалось расстояние между ними каждый час; а затем найти расстояние:
80+70=150 (км/ч), 150*3=450 (км).
Ответ: города находятся на расстоянии 450 км.
Задача 5.
Из двух городов навстречу друг другу одновременно выехали два автобуса. Первый автобус ехал со скоростью 80 км/ч, а второй – со скоростью 70 км/ч. Какое расстояние будет между ними через 2 часа, если расстояние между городами 450 км?
Решение:
Первый способ. Определить, сколько километров проехал каждый автобус и найти расстояние, которое осталось проехать:
80*2=160 (км)-проехал 1й автобус, 70*2=140 (км)-проехал 2й автобус,
160+140=300 (км)-проехали два автобуса, 450-300=150 (км)-осталось проехать.
Второй способ. Найти скорость сближения автобусов и умножить ее на время в пути.
80*70=150 (км/ч) – скорость сближения; 150*2=300 (км) – проехали два автобуса; 450-300=150 (км) – осталось проехать.
Ответ: Через 2часа расстояние между автобусами будет 150 км.
Задачи на движение в противоположных направлениях
В таких задачах два объекта движутся в противоположных направлениях, отдаляясь друг от друга. В таком типе задачи используется скорость удаления. Задачи на движение в противоположных направлениях также можно решить двумя способами:
1. Найти значения скорости, времени и расстояния для каждого объекта.
2. Найти скорость удаления объектов (как сумму их скоростей), общие время и расстояние. Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, двигающимися в противоположных направлениях.
Задача 6.
Два автомобиля выехали одновременно из одного и того же пункта в противоположных направлениях. Скорость первого автомобиля 100 км/ч, скорость второго – 70 км/ч. Какое расстояние будет между автомобилями через 4 часа?
Решение:
Первый способ. Определить расстояние, которое проехал каждый автомобиль и найти сумму полученных результатов:
1) 100 · 4 = 400 (км) – проехал первый автомобиль
2) 70 · 4 = 280 (км) – проехал второй автомобиль
400 + 280 = 680 (км)
Второй способ. Найти скорость удаления, то есть значение увеличения расстояния между автомобилями за каждый час, а затем скорость удаления умножить на время в пути.
100 + 70= 170 км/ч – это скорость удаления автомобилей.
170 · 4 = 680 (км)
Ответ: Через 4 часа между автомобилями будет 680 км.
Задача 7.
Из двух населённых пунктов, расстояние между которыми 40 км, вышли в противоположных направлениях два туриста. Первый турист шёл со скоростью 4 км/ч, а второй — 5 км/ч. Какое расстояние между туристами будет через 5 часов?
Решение:
Первый способ. Определить сколько километров прошёл каждый из туристов за 5 часов, сложить полученные результаты, а затем к полученному расстоянию прибавить расстояние между населенными пунктами.
1) 4 · 5 = 20 (км) – прошёл первый турист;
2) 5 · 5 = 25 (км) – прошёл второй турист;
3) 20 + 25 = 45 (км);
4) 45 + 40 = 85 (км).
Второй способ. Найти скорость удаления пешеходов, затем найти пройденное расстояние, к полученному результату прибавить расстоянием между населёнными пунктами.
4 + 5 = 9 (км/ч);
9 · 5 = 45 (км);
45 + 40 = 85 (км);
Ответ: Через 5 часов расстояние между пешеходами будет 85 км.
Задачи на движение в одном направлении
В таких задачах два объекта движутся в одном направлении с разной скоростью, при этом они сближаются друг с другом или отдаляются друг от друга. Соответственно находится скорость сближения или скорость удаления объектов.
Формула нахождения скорости сближения или удаления двух объектов, которые движутся в одном направлении: из большей скорости вычесть меньшую.
Задача 8.
Из города выехал автомобиль со скоростью 40 км/ч. Через 4 часа вслед за ним выехал второй автомобиль со скоростью 60 км/ч. Через сколько часов второй автомобиль догонит первый?,
Решение:
Задачу можно решить с помощью уравнения.
В этом случае скорость первого автомобиля 40 км/час, время в пути на 4 часа больше, чем время второго автомобиля (или t+4). Скорость второго автомобиля 60 км/час, время в пути – t. Расстояние оба автомобиля проехали одинаковое. Поэтому можно составить уравнение: 40*(t+4)=60*t. Отсюда получаем t=8 (часов) – время в пути второго автомобиля, за которое он догонит первый.
Решение задачи без использования уравнения.
Так как на момент выезда второго автомобиля из города первый уже был в пути 4 часа, то за это время он успел удалиться от города на: 40 · 4 = 160 (км).
Второй автомобиль движется быстрее первого, значит, каждый час расстояние между автомобилями будет сокращаться на разность их скоростей: 60 — 40 = 20 (км/ч) – это скорость сближения.
Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся: 160 : 20 = 8 (ч)
Ответ: Второй автомобиль догонит первый через 8 часов.
Задача 9.
Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?
Решение: Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов: 5 — 4 = 1 (км/ч).
Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого: 5 : 1 = 5 (ч)
Ответ: Через 5 часов второй пешеход догонит первого.
Задача 10.
Два автомобиля выехали одновременно из одного и того же пункта в одном направлении. Скорость первого автомобиля 80 км/ч, а скорость второго – 40 км/ч.
1) Чему равна скорость удаления между автомобилями?
2) Какое расстояние будет между автомобилями через 3 часа?
3) Через сколько часов расстояние между ними будет 200 км?
Решение:
1) 80 — 40 = 40 (км/ч) — скорость удаления автомобилей друг от друга.
2) 40 · 3 = 120 (км) – расстояние между ними через 3 часа./
3) 200 : 40 = 5 (ч) – время, через которое расстояние между автомобилями станет 200 км.
Ответ:
1) Скорость удаления между автомобилями равна 40 км/ч.
2) Через 3 часа между автомобилями будет 120 км.
3) Через 5 часов между автомобилями будет расстояние в 200 км.
Задачи на движение по реке
Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.
Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки. Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.
Задача 11.
Лодка движется по реке. За сколько часов она преодолеет расстояние 120 км, если ее собственная скорость 27 км/ч, а скорость течения реки 3 км/ч?
Решение:
1) лодка движется по течению реки.
27 + 3 = 30 (км/ч) – скорость лодки по течению реки.
120 : 30 = 4 (ч) – проплывет путь.
2) лодка движется против течения реки.
27 — 3 = 24 (км/ч) — скорость лодки против течения реки
120 : 24 = 5 (ч) – проплывет путь.
Ответ:
1) При движении по течению реки лодка потратит 4 часа на путь.
2) При движении против течения реки лодка потратит 5 часов на путь.
Итак, для решения задач на движение:
Заключение.
Решая много задач по данной теме, ученик обязательно научится быстро ориентироваться в понятиях «скорость», «время» и «расстояние» и быстро решать задачи всех типов. Получить карточки с задачами разных видов можно по ссылке.