как узнать скорость звука
Скорость звука
Узнайте, какая скорость звука в материалах: как определить скорость звука, показатель для разных типов звуковых волн, формула скорости распространения звука.
Скорость звука – дистанция, пройденная звуковой волной за временной промежуток через эластичную среду. Чаще всего, отображается как 344 м/с.
Задача обучения
Основные пункты
Термины
Скорость звука
Звуковая скорость – дистанция, преодоленная звуковой волной за временной промежуток сквозь эластичную среду. Она может быть твердой, жидкой, газообразной или плазменной. Как определить скорость звука? Показатели скорости основываются на свойствах материала. Общее значение задается показателем на уровне моря при нормальном атмосферном давлении – 344 м/с. Но это число не выступает неизменным, так как звук проходит быстрее в твердом теле, чем в жидком или газообразном.
Типы звуковых волн: сжатие и сдвиг
Есть две разновидности звуковых волн: сжатие и сдвиг. Давайте разберемся в том, как определить, какая скорость звука перед вами. Первые проходят сквозь любую среду, а вторые способны перемещаться исключительно сквозь твердые объекты. Скорость сжатия вычисляется по мощности сжатия среды, модулем сдвига и плотностью. Модуль сдвига отображает перемены в эластичности или жесткости материала.
Вычисление звуковой скорости
Скорость распространения звука отображается буквой с и для ее обнаружения можно применить уравнение Ньютона-Лапласа: (K – коэффициент жесткости, p – плотность среды). Здесь видно, что звуковая скорость растет вместе с жесткостью и падает с плотностью. Это удобная формула, так как ее можно подстраивать под конкретные ситуации. Например, звуковая скорость в воздухе на уровне моря выводится через уравнение: (Т – температура в Кельвинах).
Число Маха
Если вы читали о скорости космических кораблей или самолетов, то могли столкнуться с числом Маха. Это соотношение скорости тела со звуковой. Передается через формулу M = v/a (М – число Маха, v – скорость объекта, а – скорость звука в среде). Если что-то перемещается со звуковой скоростью, то уравнение отобразит струю, которая способна превзойти указанный показатель. Паровой конус формируется перед тем, как самолет достигнет звуковой скорости и вызывается внезапным падением давления воздуха.
Перед вами реактивный самолет, готовящийся разорвать звуковой барьер
Скорость звука
Из Википедии — свободной энциклопедии
0 °C, 101325 Па | м/с | км/ч |
---|---|---|
Азот | 334 | 1202,4 |
Аммиак | 415 | 1494,0 |
Ацетилен | 327 | 1177,2 |
Водород | 1284 | 4622,4 |
Воздух | 331 | 1191,6 |
Гелий | 965 | 3474,0 |
Кислород | 316 | 1137,6 |
Метан | 430 | 1548,0 |
Угарный газ | 338 | 1216,8 |
Неон | 435 | 1566,0 |
Углекислый газ | 259 | 932,4 |
Хлор | 206 | 741,6 |
Жидкости | ||
Вода | 1403 | 5050,8 |
Ртуть | 1383 | 4978,0 |
Твёрдые тела | ||
Алмаз | 12000 | 43200,0 |
Железо | 5950 | 21420,0 |
Золото | 3240 | 11664,0 |
Литий | 6000 | 21600,0 |
Стекло | 4800 | 17280,0 |
Скорость звука — скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах).
Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях — меньше, чем в твёрдых телах. Также в газах скорость звука зависит от температуры данного вещества, в монокристаллах — от направления распространения волны.
Обычно не зависит от частоты волны и её амплитуды; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.
Звук (звуковые волны). Скорость звука.
Для распространения звука необходима упругая среда. В вакууме звуковые волны распространяться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.
Известно, что во время грозы мы видим вспышку молнии и лишь через некоторое время слышим раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии.
Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсенном. При температуре 20 °С она равна 343 м/с, т. е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из автомата Калашникова. Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.
Скорость звука в газах зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением — убывает. При 0 °С скорость звука в воздухе составляет 332 м/с.
В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде составляет 1284 м/с, в гелии — 965 м/с, а в кислороде — 316 м/с.
Скорость звука в твердых телах больше, чем в жидкостях и газах. Если приложить ухо к рельсу, то после удара по другому концу рельса слышно два звука. Один из них достигает уха по рельсу, другой — по воздуху.
Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали «слухачей», которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближением вражеской конницы.
Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до слуховых нервов не через воздух и наружное ухо, а через пол и кости.
Скорость звука можно определить, зная длину волны и частоту (или период) колебаний:
Скорость звука
Азот | 334 |
Аммиак | 415 |
Ацетилен | 327 |
Водород | 1284 |
Воздух | 331 |
Гелий | 965 |
Кислород | 316 |
Метан | 430 |
Угарный газ | 338 |
Углекислый газ | 259 |
Хлор | 206 |
Скорость звука — скорость распространения упругих волн в среде — как продольных в газах, жидкостях и твердых телах, так и поперечных (сдвиговых) в твердой среде. Определяется упругостью и плотностью среды. Скорость звука в газах не является величиной постоянной и зависит от температуры данного вещества, в монокристаллах зависит от направления распространения волны и при заданных внешних условиях обычно не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и скорость звука зависит от частоты, говорят о дисперсии звука. Впервые измерена Уильямом Дерхамом.
Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, поэтому при сжижении газа скорость звука возрастает.
Содержание
Расчёт скорости в жидкости и газе
Скорость звука в однородной жидкости (или газе) вычисляется по формуле:
где — адиабатическая сжимаемость среды; — плотность.
Для газов эта формула выглядит так:
где — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных; — постоянная Больцмана; — универсальная газовая постоянная; — абсолютная температура в кельвинах; — температура в градусах Цельсия; — молекулярная масса; — молярная масса. По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул и в приближении постоянства показателя адиабаты пропорциональна квадратному корню из абсолютной температуры.
Данные выражения являются приближенными, поскольку основываются на уравнениях, описывающих поведение идеального газа. При больших давлениях и температурах необходимо вносить соответствующие поправки.
Для расчета сжимаемости многокомпонентной смеси, состоящей из невзаимодействующих друг с другом жидкостей и/или газов, применяется уравнение Вуда. Это же уравнение применимо и для оценки скорости звука в нейтральных взвесях.
Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.
Твёрдые тела
В однородных твёрдых телах могут существовать два типа объемных волн, отличающихся друг от друга поляризацией колебаний относительно направления распространения волны: продольная (P-волна) и поперечная (S-волна). Скорость распространения первой всегда выше, чем скорость второй :
где — модуль всестороннего сжатия; — модуль сдвига; — модуль Юнга; — коэффициент Пуассона. Как и для случая с жидкой или газообразной средой, при расчетах должны использоваться адиабатические модули упругости.
В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода. При частоте колебаний ниже частоты Био, скорость упругих волн может быть приблизительно оценена с использованием гораздо более простых уравнений Гассмана.
При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.
Скорость звука в воде
В чистой воде скорость звука составляет 1500 м/с (см. опыт Колладона—Штурма). Прикладное значение имеет также скорость звука в солёной воде океана. Скорость звука увеличивается в более солёной и более тёплой воде. При большем давлении скорость также возрастает, то есть чем глубже, тем скорость звука больше. Разработано несколько теорий распространения звука в воде.
Например, теория Вильсона 1960 года для нулевой глубины даёт следующее значение скорости звука:
,
Иногда также пользуются упрощённой формулой Лероя:
,
СКОРОСТЬ ЗВУКА
Измерения С. з. используются для определения мн. свойств вещества, таких,
Смотреть что такое «СКОРОСТЬ ЗВУКА» в других словарях:
Скорость звука — в газах (0 °C; 101325 Па), м/с[1] Азот 334 Аммиак 415 Ацетилен 327 Водород 1284 Воздух 331 Гелий 965 Кислород 316 … Википедия
Скорость звука — скорость распространения какой либо фиксированной фазы звуковой волны; называется также фазовой скоростью, в отличие от групповой скорости (См. Групповая скорость). С. з. обычно величина постоянная для данного вещества при заданных… … Большая советская энциклопедия
СКОРОСТЬ ЗВУКА — скорость распространения звуковых волн в среде. В газах скорость звука меньше, чем в жидкостях, а в жидкостях меньше, чем в твердых телах (причем для сдвиговых волн скорость всегда меньше, чем для продольных). скорость звука в газах и парах от… … Большой Энциклопедический словарь
скорость звука — скорость распространения акустических волн 1. Скорость распространения упругой волны в среде. Единица измерения м/с 2. Фазовая или групповая скорость акустической волны в недисперсионном материале для данного направления распространения. [BS EN… … Справочник технического переводчика
Скорость звука — скорость распространения (относительно среды) малых возмущений давления. В совершенном газе (например, в воздухе при умеренных температурах и давлении) С. з. не зависит от характера распространяющегося малого возмущения и одинакова как для… … Энциклопедия техники
СКОРОСТЬ ЗВУКА — скорость распространения звуковых волн (см. ) в упругих средах (твёрдых телах, жидкостях и газах). Эта скорость зависит (при достаточно малых амплитудах) от механических свойств среды (сжимаемости (см.), (см.), (см.)), не зависит от частоты волны … Большая политехническая энциклопедия
скорость звука — скорость распространения звуковых волн в среде. В газах скорость звука меньше, чем в жидкостях, а в жидкостях меньше, чем в твердых телах (причём для сдвиговых волн всегда меньше, чем для продольных). Скорость звука в газах и парах от 150 до… … Энциклопедический словарь
скорость звука — 2.1.26 скорость звука; скорость распространения ультразвуковой волны: Фазовая или групповая скорость акустической волны в недисперсионном (однородном) материале в направлении распространения. Источник: ГОСТ Р ИСО 5577 2009: Контроль неразрушающий … Словарь-справочник терминов нормативно-технической документации
скорость звука — garso greitis statusas T sritis automatika atitikmenys: angl. sound velocity vok. Schallgeschwindigkeit, f rus. звуковая скорость, f; скорость звука, f pranc. vitesse du son, f … Automatikos terminų žodynas
скорость звука — garso greitis statusas T sritis Energetika apibrėžtis Greitis, kuriuo garsas sklinda tam tikroje aplinkoje arba terpėje. atitikmenys: angl. sonic speed vok. Schallgeschwindigkeit, f rus. звуковая скорость, f; скорость звука, f pranc. célérité du… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas