как узнать вольтаж моторчика
Все о моделях железных дорог!
Подключение через аккаунт в соц.сети
Об определении рабочего напряжения неизвестного двигателя.
Об определении рабочего напряжения неизвестного двигателя.
Джентльмены,
Выкладываю здесь копию моей заметки на эту тему, опубликованной в ЛТ в 2006 году.
Существует распространенное заблуждение, что двигатель модели может быть и маленьким, но, если он достаточно высокооборотный, то достаточно оснастить привод модели редуктором с большим коэффициентом замедления (скажем, К=60 или К=80), и получится тот же результат, что с более крупным и тихоходным двигателем и редуктором с меньшим К. Отсюда возникают проекты с крошечными моторчиками, спрятанными в раме, или между боковинами тележек… На самом деле, подобной «подменой» действительно можно обеспечить равенство в обоих случаях, но это равенство будет условным, и только для крутящего момента.
Возьмем 2 условные комбинации «мотор+редуктор»:
Достаточно вспомнить, что для передвижения поезда с масштабной скоростью (на расстояние L за время T) локомотив должен обладать некоей силой тяги F. Эту силу действительно способны развить обе вышеуказанные комбинации (при равенстве крутящих моментов на ободе колеса). Совершенная физическая работа А = F x L, а значит – и выданная механическая мощность P = А / Т окажутся также одинаковыми. Однако эту мощность, со скидкой на КПД, двигатель потребил в виде электричества, и ее значительную часть он должен рассеять в виде тепла. Причем рассеять очень быстро и эффективно, чтобы не перегрелась обмотка, изоляция, подшипники и пр. И тут становится ясно, что маленький двигатель не способен хорошо охлаждаться, так как его миниатюрные детали являются НЕдостаточно массивными для быстрого пропускания теплоты. Даже при номинальной нагрузке перегрев быстро концентрируется в обмотке маленького двигателя, и тепло «не уходит» на сердечник ротора и статор в достаточной степени. Сначала обмотка нагревается, увеличивается ее сопротивление, потребляемый ток и мощность падают… Двигатель как бы «пытается защититься» от критического режима… Но нагрев продолжается… Смазка в подшипниках начинает хуже выполнять свои функции или вообще вытекает из-за нагрева… Двигатель сгорает.
Если двигатель совсем не пришел в движение, то:
1) либо его обмотка (или щеточный механизм) неисправны – тогда нужно «прозвонить» мотор тестером (или любым другим доступным способом – вплоть до лампочки с батарейкой).
Первый случай дальше не рассматриваем: ремонт неисправных двигателей выходит за пределы настоящей заметки. Если двигатель вращается совсем слабо, то рассматриваем это тоже как «второй случай»: значит, рабочее напряжение где-то выше.
Теперь можно собрать простейшую схему (рис. 1) из регулируемого блока питания, вольтметра и амперметра (современные аналоговые блоки для питания макетов, особенно американские, уже имеют эти встроенные 2 прибора на лицевой панели). Наша задача: замерить напряжение ТРОГАНИЯ двигателя на холостом ходу. Практикой установлена простая закономерность:
РАБОЧЕЕ НАПРЯЖЕНИЕ ПРИМЕРНО В 5 РАЗ ВЫШЕ НАПРЯЖЕНИЯ ТРОГАНИЯ.
Однако в некоторых случаях приборы могут показывать именно такие большие величины (типа 5-8 ампер при 12 вольтах). Причин может быть несколько:
2) Плохое состояние подшипников (отсутствие смазки, грязь, ржавчина) или коллектора (нагар, окислы, задиры). В этом случае двигатель туго прокручивается даже «от руки», а под напряжением – трогается поздно, при большом напряжении и большом токе. Раскрутившись, двигатель, на первый взгляд, работает неплохо, и через несколько минут даже «добавляет оборотов». Но стрелка амперметра не дает ошибиться: внутреннее трение в двигателе недопустимо велико, идет интенсивный износ и нагрев…
3) Внутренний обрыв на одной или нескольких секциях обмотки ротора (справедливо для сложных современных двигателей ДПМ, ДПР, и прочих «военных», «авиационных» и «космических», имеющих 5- или 7- или 9-полюсные обмотки ротора. Такой двигатель может не запускаться из определенных положений ротора (у исправного двигателя не бывает «мертвых точек»), сильно шумит и вибрирует, крутится вяло и не тянет. Рабочий ток у него в среднем почти нормальный, но при просмотре на экране осциллографа на месте обычных пилообразных импульсов видны «пропущенные такты», когда ток через двигатель прерывается (в моменты включения в коллекторную цепь неисправных секций обмотки).
Другие способы оценки рабочего напряжения.
Оценка на слух.
Я встречал этот совет в Интернете, но результат такой оценки мне кажется слишком неточным: якобы нормальный режим холостого вращения двигателя диаметром 2-3 см соответствует звуку частотой примерно 3 кГц. Если звук холостого хода гораздо выше – поданное напряжение наверняка слишком велико для данного двигателя.
Сравнение с аналогичным двигателем.
Предлагается сравнивать напряжение при одинаковом значении тока у двух двигателей (свойства одного из которых точно известны). При этом еще оценивать скорость вращения. Методика требует опыта, хотя менее субъективна, чем предыдущая.
Оценка по искрению коллектора.
Требуется блок питания с достаточным запасом по мощности. Метод основан на том допущении, что обычно в хороших двигателях сечение щеток, размеры ламелей коллектора, усилия прижатия щеток сбалансированы и продуманы: они рассчитаны так, чтобы в номинальном режиме не создавать искрения и шума. Следует плавно наращивать напряжение на холостом ходу, наблюдая за работой щеток и коллектора (такое наблюдение возможно, естественно, не на всех типах двигателей). Довести двигатель до момента возникновения первых регулярных искр. Не допускать сильного искрения (а тем более «кругового огня» на коллекторе). Не доводить до появления необычных шумов. «Поймав» момент начала регулярного искрения, следует дать двигателю поработать минут 10, наблюдая за температурой корпуса. Если сильного нагрева (свыше 50 градусов) нет, то это и есть максимально допустимое длительное напряжение для данного двигателя.
Оценка момента насыщения магнитного потока двигателя.
Самый научно обоснованный метод. В его основе лежит свойство магнитных материалов ротора насыщаться магнитным потоком (когда ток через обмотку продолжает нарастать, а сила магнитного потока в магнитопроводе – больше не растет, достигнув максимума). Дело в том, что двигатель при вращении не только потребляет электроэнергию. Он еще и генерирует свою электроэнергию: это ЭДС (т.е. напряжение) самоиндукции, которое складывается с питающим напряжением в той же полярности (то есть «+» ЭДС вырабатывается на той же клемме двигателя, на которую подается «+» источника внешнего питания).
ЭДС самоиндукции прямо пропорциональна магнитному потоку якоря двигателя. Таким образом, если наращивать напряжение питания двигателя, то в какой-то момент железо якоря насытится магнитным потоком. Потребляемый ток двигателя будет продолжать нарастать, а вот магнитный поток, и, значит, ЭДС самоиндукции, нарастание прекратят или ощутимо замедлят. Наблюдая за амплитудой «всплесков» ЭДС самоиндукции на экране осциллографа, можно поймать момент, когда ее рост прекратится, или даже она начнет уменьшаться. Несмотря на то, что наращивание питающего напряжения еще можно продолжить… Именно при этом напряжении питания двигатель имеет максимальный КПД, и, если не происходит сильного разогрева корпуса в течение 10 минут, то двигатель можно рекомендовать для длительной работы в данном режиме.
Скажу честно: сам я такой вариант не пробовал. Нюансы, о которых надо помнить:
ЭЛЕКТРОДВИГАТЕЛИ ЛЮБЫХ МОДЕЛЕЙ ______________ _____________ СО СКЛАДА И ПОД ЗАКАЗ
Самое популярное
Календарь
П | В | С | Ч | П | С | В |
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
Анонсы новостей
Стоматологические услуги и процедуры
Современные люди, что сталкиваются с болями или заболеваниями зубов, предпочитают обращаться в проверенные центры и клиники, в которых работают опытные, квалифицированные врачи. Например, такая стоматология в санкт петербурге, как «Хорошая стоматолог.
Архив новостей
Просто о двигателях постоянного тока
Насколько большое напряжение можно подать на двигатель? Обычно все моторы рассчитаны (или должны рассчитываться) на определенную мощность. Мощность это энергия. Неэффективность преобразования электричества в движение напрямую связано с нагревом. Слишком много тепла и обмотки двигателя расплавятся. Поэтому производители моторов (качественных) знают, какая мощность приведет к повреждению двигателя и дают эту информацию в документации на двигатель.Поэкспериментируйте, что бы определить, какое количество тока потребляет двигатель при используемом напряжении.
Мощность [Ватт] = Напряжение [Вольт] * Ток [Ампер]
Для смены направления вращения необходимо изменить полярность питания. Двигатель обладает собственной индукцией и моментом, которые сопротивляются этому изменению напряжения. Поэтому при смене направления вращения двигателя происходит мощный кратковременный выброс. Напряжение импульса может вдвое превышать напряжение питания. Ток примерно равняется максимальному. Отсюда вывод, силовая система управления должна быть рассчитана на мощные электрические импульсы.
Наиболее важной технологией управления мотором постоянного тока на сегодня является Н-мост. После того как Н-мост будет подключен к двигателю, для определения скорости вращения и положения вала нужно использовать энкодер. И наконец, нужно найти хороший способ торможения двигателя.
Подключение конденсатора емкостью несколько микрофарад между клеммами двигателя поможет продлить срок службы. Этот способ отлично работает с шумными и другими недорогими двигателями, почти удваивает ресурс двигателя. Однако, это намного меньше по сравнению с дорогими высококачественными моторами. Дополнительные способы выбора мотора для робота можно найти в статье про динамику роботов.
Проверка электродвигателей разного вида с помощью мультиметра
Повседневная жизнь человека неразрывно связана с электродвигателями различной конфигурации, на работе которых основано действие различных приборов и оборудования. Таким оборудованием мы пользуемся постоянно и достаточно часто возникают различные неполадки в их работе, что зачастую связано с неисправностью электродвигателя. Для того, чтобы привести прибор в работоспособное состояние нужно знать, каким образом прозвонить электродвигатель. Об этом будет рассказано в данной статье.
Какие электродвигатели можно проверить мультиметром
Если двигатель не имеет очевидных внешних повреждений, то есть вероятность того, что произошел внутренний обрыв цепи или произошло короткое замыкание. Но не все электродвигатели можно просто проверить на эти дефекты мультиметром.
Например, может возникнуть сложности в диагностике электродвигателей постоянного тока, так как их обмотка имеет практически нулевое сопротивление и его можно проверить только косвенным методом по специальной схеме: одновременно снимают показания с амперметра и вольтметра с вычислением результирующего значения сопротивления по закону Ома.
Таким образом проверяют все сопротивления обмоток якоря и замеряют значения между пластинами коллектора. Если сопротивления обмоток якоря различаются, то имеется неполадки, так как в исправной машине эти значения одинаковые. Разность в значениях сопротивления между соседними пластинами коллектора должна быть не больше 10%, тогда двигатель будет считаться исправным (но если в конструкции предусмотрена уравнительная обмотка, то это значение может достигать до 30%).
Электрические машины переменного тока разделяют на:
Все эти типы двигателей доступны для диагностики с помощью измерительных приборов, в том числе с помощью мультиметров. В целом, двигатели переменного тока достаточно надежные машины и неисправности в них возникают достаточно редко, но все же такое случается.
Какие неисправности в электродвигателе позволяет выявить мультиметр
Достаточно часто для проверки электродвигателей переменного тока используется мультиметр – многофункциональный электронный измерительный прибор. Он имеется в наличии практически у каждого домашнего мастера и позволяет выявить некоторые виды неисправностей в электрических приборах, в том числе и в электродвигателях.
Самыми распространенными неисправностями, которые возникают в электрических машинах такого типа являются:
Рассмотрим каждую из этих проблем подробнее и разберем методы выявления таких неисправностей.
Проверка на обрыв или целостность обмотки
Обрыв обмотки достаточно распространенное явление при обнаружении неправильной работы электродвигателя. Обрыв в обмотке может случиться как в статоре, так и в роторе.
Если была оборвана одна фаза в обмотке, соединенной по схеме «звезда» – то ток в ней будет отсутствовать, а в других фазах значения тока будет завышено, двигатель при этом работать не будет. Также может быть обрыв параллельной ветви фазы, что приведет к перегреву исправной ветви фазы.
Если была оборвана одна фаза обмотки (между двумя проводниками), соединенной по схеме «треугольник» — то ток в двух других проводниках будет значительно меньше, чем в третьем проводнике.
Если возник обрыв в обмотке ротора, то будут происходить колебания тока с частотой, равной частоте скольжения и колебания напряжения, при этом проявится гудение и обороты двигателя будут снижены, также возникнет вибрация.
Эти причины указывают на неисправность, но выявить саму неисправность можно при помощи прозвонки и измерения сопротивления каждой обмотки электродвигателя.
В двигателях, рассчитанных на переменное напряжение 220 В, прозваниваются пусковая и рабочая обмотки. Значение сопротивления пусковой обмотки должно быть больше, чем рабочей в 1,5 раза.
В электродвигателях на 380 В, которые подключаются по схемам «звезда» или «треугольник» всю схему необходимо разобрать и проверить каждую обмотку по отдельности. Сопротивление каждой из обмоток такого электродвигателя должно быть одинаковым (с отклонением не более пяти процентов). Но при обрыве дисплей мультиметра будет показывать высокое значение сопротивления, которое стремится к бесконечности.
Проверка на короткое замыкание
Также распространенной неисправностью в электродвигателях является короткое замыкание на корпус. Для выявления этой неисправности (или её отсутствия) совершают следующие действия:
Результатом таких действий при исправном двигателе будет высокое сопротивление (несколько сотен или тысяч мегаом). «Прозвонкой» мультиметра проверить пробой на корпус даже удобнее: нужно осуществить в режиме прозвонки все те же действия, описанные выше и наличие звукового сигнала будет означать нарушение в целостности изоляции обмоток и короткое замыкание на корпус. К слову сказать, данная неисправность не только негативно влияет на работу самого оборудования, но и является опасной для жизни и здоровья человека при отсутствии специальных защитных устройств.
Проверка на межвитковое замыкание
Ещё одним видов неисправностей является межвитковое замыкание – короткое замыкание между разными витками одной катушки двигателя. При такой неполадке мотор будет гудеть и заметно снизится его мощность.
Выявить такую неисправность можно несколькими способами. Например, можно воспользоваться токовыми клещами или мультиметром.
При диагностике с помощью токовых клещей измеряют значения тока каждой из фаз обмотки статора и если значение тока в одной из них будет завышено, то там и находится замыкание.
Как узнать на какое напряжение питания рассчитан коллекторный двигатель
Коллекторный двигатель. Как узнать на какое напряжение питания рассчитан коллекторный двигатель
Коллекторный двигатель применяется отнюдь не только в электрических приборах, но даже в стиральных машинах в виде двигателя привода барабана.
Ещё 20 лет назад и по сегодняшний день очень большое количество стиральных машин работают на коллекторных двигателях.
Почему они настолько популярны до сих пор? Дело в том, что коллекторные двигатели по своим параметрам имеют не большие размеры и оснащены достаточной мощностью.
Коллекторным двигателем называется двигатель с одной фазой и последующим возбуждением обмоток.
Это устройство функционирует для работы от сети постоянного/переменного тока. Коллекторный двигатель зачастую называют универсальным.
Будьте внимательны при подборки двигателя, учитывайте его напряжение.
Приведём пример, в двигатели модели под названием «Speed 400» есть моторы, напряжение который составляет 4,8 Вт, 6 Вт, и 7,2 Вт.
Благодаря этим значениям можно узнать о количестве банок в батарее, с которыми работает устройство. Напряжение на NiCd либо NiMH аккумуляторе равно 1,2 Вт.
Не сложно сделать расчёт и убедиться, что мотор имеет напряжение 4,8 Вт и рассчитан для производительности от четырёх баночной аккумуляторной батареи.
Но такие показатели всё равно приблизительные, ведь даже при высоком напряжении моторы могут хорошо работать.
Коллекторный двигатель состоит из таких важных частей:
4) магнитный якорь тахогенератора;
5) обмотка; 6) клеммная обмотка;
9) корпус из алюминия.
Намотка якоря коллекторного двигателя видео
Якорь является динамичной составляющей двигателя.
Намотка якоря коллекторного двигателя последующего возбуждения будет равна напряжению захватов, а также значению магнитного потока, которое зависит от нагрузки двигателя.
Во время холостого хода движение якоря способно увеличить номинальную в 3 — 4 раза и более, но это нежелательно по причине значительных сил, в результате которых якорь портиться.
Движение якоря будет неизменным, если система номинальная и ответственна работе от сети напряжения.
Но если двигатель перезагружен и соединён к сети переменного напряжения, движение якоря будет идти на уменьшение, следовательно, когда происходит разгрузка – на увеличение.
Когда холостой ход движение якоря, возможно, будет увеличиваться и превысит почти в 3 и даже больше номинальную. Отметим, что такой режим работы будет негативно влиять на якорь.
Поэтому такой режим подходит для устройств, мощность которых невысокая. Двигатели с мелкими техническими затратами должны иметь можность не меньше 25 процентов.
Намотка якоря коллекторного двигателя целесообразна после того, как измерены размеры якоря и ликвидирована прежняя обмотка.
Разрезаем провода старой обмотки и убираем их из пазов якоря. Затем отпаиваем провода от пластин коллектора и хорошо чистим участки пайки проводов и пазы якоря.
Устанавливаем в пазы якоря изоляционные прокладки электрокартона, режем их согласно длине паза якоря, загибаем по форме паза и вставляем пазы.
Намотку якоря коллекторного двигателя можно сделать своими руками. Для намотки якоря используются провода эмалевой, шелковой либо лавсановой изоляцией марок ПЭЛШКО, ПЭЛО, ПЭЛ и другие.
В процессе намотки происходит расположение якорей необходимого сечения при этом соблюдая шаги по пазам.
Щетки для коллекторных двигателей
Щетка коллекторного двигателя является узлом устройства, благодаря которому соединяются цепи ротора с цепями, находящиеся в недвижимом участки машины.
Щетка имеет коллектор и щётки (скользящие контакты, расположенные за ротором и придавленные к коллектору).
Щётка выполняет такие задачи:
Благодаря постоянному трению скользящих контактов щётка быстро портиться. Поэтому щётка относиться к одним из частей коллекторного двигателя, которая весьма ненадёжна.
Таким образом, мы ознакомились с работой коллекторного двигателя и изучили работу основных его составляющих.
Как проверить электродвигатель. Готовим мультиметр
Представьте, что любимый раритетный пылесос перестал работать. Разбираемся, как прозвонить мультиметром электродвигатель. Электромоторы приводят в действие не только пылесосы. Многие полезные приборы — мясорубки, кухонные комбайны, швейные машины — работают с помощью электрического силового агрегата.
Обеспечиваем безопасность
В первую очередь перед любыми электротехническими работами следует обесточить объект. Обязательно вынимаем вилку из розетки, не ограничиваясь выключателем. Выключатель можно включить случайным нажатием, а вилку в розетку вставить, задев локтем, проблематично.
Готовим пациента
Двигатель для проверки, скорее всего, придётся снять. Хотя, асинхронные двигатели можно прозвонить и без демонтажа, если есть доступ к контактам. А вот коллекторный двигатель придётся не просто снять с условного пылесоса, но и разобрать.
Готовим мультиметр
Во первых, включаем мультиметр и смотрим, есть ли индикация в режиме измерения сопротивления. Мультиметр должен показывать 1 при любом положении селектора в пределах сектора измерения сопротивления. Во-вторых, присоединяем провода для измерения сопротивления. Чёрный провод включаем в гнездо Com, красный — в гнездо с обозначениями амперов, вольтов, омов. Всё делаем в соответствии со статьёй Как правильно подключить провода к мультиметру. Проверяем мультиметр. Ставим селектор на любой предел от 2 до 2000 КОм и замыкаем щупы. На шкале прибора должен появиться ноль, который сменится единицей после размыкания щупов. Если что-то идёт не так, мультиметр нужно привести в чувство. Обычно хватает свежих батареек.
Прозваниваем асинхронный двигатель
Переводим селектор тестера в сектор, отвечающий за сопротивление на предел в 100 или 200 Ом. У асинхронного двигателя три вывода. Значение сопротивления между одним из крайних и средним контактом лежит в пределах 30–50 Ом, а между другим крайним и средним — в пределах 15–20 Ом. Если всё так и обстоит — обмотки двигателя исправны. Положение щупов — красный-чёрный — при измерении неважно. Проверяем утечку на массу. Для этого переводим селектор тестера в режим измерения сопротивления на 2000 килоом. Один щуп замыкаем на клемму двигателя, другой — на корпус. Должна быть единица на индикаторе. Последовательно проходим все остальные клеммы. Результаты измерений при этом меняться не должны. Если всё так — утечки на массу нет, двигатель исправен.
Прозваниваем коллекторный двигатель
Селектор переводим на сопротивление. На 200 Ом. И прозваниваем ротор и статор отдельно. Номинальное сопротивление каждой обмотки статора — обычно их две — можно узнать из документации к двигателю. Но, если оно неизвестно, любое значение в диапазоне от 5 до 100–150 Ом будет свидетельствовать об исправности обмотки. Ротор или якорь коллекторного двигателя имеет больше обмоток. Прозваниваем каждую. Располагаем щупы в коллекторе так, чтобы они были на максимальном расстоянии друг от друга. Щупы как бы занимают место щёток двигателя. Чуть поворачиваем ротор, пока мультиметр не покажет небольшое сопротивление. Продолжаем вращать вал, пока контакт не потеряется, а потом не восстановится. Так проверяем все обмотки. Затем переводим селектор тестера в сектор сопротивления, устанавливая предел в 2000 КОм и проверяем на утечку. Не касаясь голыми руками ни деталей двигателя, ни оголённых щупов, измеряем сопротивление между обмоткой статора и корпусом. Прибор должен показывать единицу. Аналогично проверяется и ротор. Каждая обмотка и корпус замыкаются. Если прибор покажет значение, отличное от единицы — надо принимать меры. Берегите себя, соблюдайте правила безопасности.