как узнать высоту прямоугольника зная ширину и диагональ
Диагональ прямоугольника
Прямоугольник — четырёхугольник, у которого все углы равны 90 градусов, т. е. прямые.
Диагональ прямоугольника — прямая проложенная из противоположных вершин прямоугольника.
Диагонали прямоугольника равны и они делят прямоугольник на два равных прямоугольных треугольника.
Чтобы найти диагональ прямоугольника необходимо вспомнить теорему Пифагора, ведь диагональ — это гипотенуза прямоугольного треугольника, а стороны (длина и ширина) прямоугольника являются катетами треугольника.
Как найти диагональ прямоугольника
Воспользуемся теоремой Пифагора и формулой
d — диагональ квадрата
a — длина прямоугольника
b — ширина прямоугольника
Подставив в формулу вместо a длину прямоугольника, а вместо b — ширину прямоугольника и произведя расчет мы получим диагональ прямоугольника. Следует помнить, что у прямоугольника две диагонали и они равны между собой.
Диагональ прямоугольника онлайн калькулятор
Чтобы найти диагональ с помощью калькулятора введите длину и ширину прямоугольника и нажмите кнопку Рассчитать. В результате вы получите ответ и подробное решение.
Нахождение диагонали прямоугольника используется в различных жизненных ситуациях. К примеру, при проектировании фундамента дома необходимо проверить его диагонали — они должны быть равны между собой. Также на сайте можно рассчитать диагональ квадрата.
Прямоугольник. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).
Можно дать и другое определение прямоугольника.
Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.
Свойства прямоугольника
Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.
Длиной прямоугольника называется более длинная пара его сторон.
Шириной прямоугольника называется более короткая пара его сторон.
Диагональ прямоугольника
Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.
На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.
Для вычисления длины диагонали воспользуемся теоремой Пифагора:
Из равенства (1) найдем d:
Пример 1. Стороны прямоугольника равны . Найти диагональ прямоугольника.
Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя в (2), получим:
Ответ:
Окружность, описанная около прямоугольника
Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):
Формула радиуса окружности описанной около прямоугольника
Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.
Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть
Подставляя (3) в (2), получим:
Пример 2. Стороны прямоугольника равны . Найти радиус окружности, описанной вокруг прямоугольника.
Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя в (4), получим:
Ответ:
Периметр прямоугольника
Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.
Периметр прямоугольника вычисляется формулой:
где \( \small a \) и \( \small b \) − стороны прямоугольника.
Пример 3. Стороны прямоугольника равны . Найти периметр прямоугольника.
Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя в (5), получим:
Ответ:
Формулы сторон прямоугольника через его диагональ и периметр
Выведем формулу вычисления сторон прямоугольника, если известны диагональ \( \small d \) и периметр \( \small P \) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие \( \small \frac P2>d \) (это следует из неравенства треугольника).
Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:
(6) |
(7) |
Из формулы (7) найдем \( \small b \) и подставим в (6):
(8) |
(9) |
Упростив (4), получим квадратное уравнение относительно неизвестной \( \small a \):
Вычислим дискриминант квадратного уравнения (10):
(11) |
Сторона прямоугольника вычисляется из следующих формул:
После вычисления \( \small a \), сторона \( \small b \) вычисляется или из формулы (12), или из (8).
Примечание. Легко можно доказать, что
Пример 4. Диагональ прямоугольника равна , а периметр равен . Найти стороны прямоугольника.
Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант \( \small D \) из формулы (11). Для этого подставим , в (11):
Подставляя значения и в первую формулу (12), получим:
Найдем другую сторону \( \small b \) из формулы (8). Подставляя значения и в формулу, получим:
Ответ: ,
Признаки прямоугольника
Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.
Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.
Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.
Длина прямоугольника
Что такое длина прямоугольника
Довольно часто люди путают местами длину и ширину прямоугольника, как правило, это не критично, но в результате значительно уменьшается наглядность, а от этого страдает качество решения.
Прямоугольник это частный случай параллелограмма. Параллелограмм, каждый угол которого равен 90 градусам, называется прямоугольником. Для наглядного изображения лучше будет, если нижней опорой прямоугольника будет служить длина. Так сложилось, что такой рисунок больше всего напоминает рисунки в учебнике, а потому ученику будет проще разобраться в теме.
Рис. 1. Изображение прямоугольника
Три способа найти длину прямоугольника
Если разделить фигуру на две части диагональю, то можно заметить, что прямоугольник поделится ею на два прямоугольных треугольника. Из этого разделения и вытекают все формулы длины прямоугольника.
Через теорему Пифагора
Если известна длина диагонали (обозначим ее буквой d) и длина прямоугольника (примем значение за букву a). Тогда корень квадратный из разности квадратов диагонали и длины будет равен ширине прямоугольника.
Чтобы было понятнее, напишем решение в виде нескольких формул.
Согласно теореме Пифагора – квадрат гипотенузы равен сумме квадратов катетов. Гипотенуза – это сторона, противоположная прямому углу, две другие стороны зовутся катетами. В нашем случае гипотенуза это диагональ.
В случае необходимости, можно поменять местами а и b, тогда получится формула длины.
Через площадь
Рассмотрим еще один способ найти длину прямоугольника – через площадь.Площадь прямоугольника равна произведению длины и ширины. То есть, используя уже знакомые обозначения S=a*b. Выразим из этой формулы значение ширины: b=S/b.
Так же, как и в первом методе, можно поменять местами а и b, чтобы получить формулу для длины: a=S/b.
Тригонометрическая функция
Один из самых быстрых, но при этом немного сложных способов нахождения длины – воспользоваться тригонометрической функцией.
Если имеется прямоугольный треугольник, то соответственно имеются отношения, известные как синус и косинус.
Выберем угол между длиной и диагональю. Обозначим его α. Тогда sin α равен отношению катета, противоположного углу α к гипотенузе: Sin α = a/c
Рис. 2. Угол альфа на половине прямоугольника
Значение синуса любого угла можно найти в таблицах Брадиса или с помощью калькулятора. Для удобства можно воспользоваться онлайн-версией, которая найдет значение отношения автоматически.
Но в формуле нет значения b, которое соответствует длине, а, значит, воспользуемся основным тригонометрическим тождеством. Косинус – это отношение стороны, прилежащей к углу, к гипотенузе: cos a=b/c
Значит можно найти длину, умножив косинус на гипотенузу: b=cos α*c
Задача
Воспользуемся теоремой Пифагора и найдем b. Длина равна корню квадратному из разности квадрата диагонали и квадрата ширины.
Корень квадратный из 16 равен 4.
Рис. 3. Решение задачи
Что мы узнали?
Мы рассмотрели, как правильно изображать прямоугольник для большей наглядности, рассмотрели как можно найти длину или ширину при различных условиях задачи и решили задачу средней сложности на нахождение длины прямоугольника через теорему Пифагора.
Стороны прямоугольника
Свойства
Зная стороны прямоугольника, можно вычислить все остальные его параметры, используя следующий ход действий. Периметр прямоугольника представляет собой удвоенную сумму его сторон, поэтому его можно сразу вычислить. P=2(a+b)
Площадь прямоугольника равна произведению его сторон, поэтому ее также можно найти сразу. S=ab
Диагонали в прямоугольнике являются конгруэнтными, каждая из них образует прямоугольный треугольник со сторонами прямоугольника. Из теоремы Пифагора каждая диагональ будет равна квадратному корню из суммы квадратов сторон прямоугольника. (рис. 56.1) d_1=d_2=√(a^2+b^2 )
Из этого же прямоугольного треугольника можно найти углы α и β при диагоналях, зная только стороны прямоугольника. Отношения катетов друг к другу дают тангенс или котангенс углов треугольника, поэтому α и β будут равны арктангенсу отношений сторон, а дальше значение в градусах можно найти, используя таблицы тангенсов. α=arc tan〖b/a〗 β=arc tan〖a/b〗
Углы γ и δ, образованные пересечением диагоналей, как видно из чертежа, через прямоугольный треугольник с полуосью, равны удвоенным значениям α и β соответственно. (рис.56.2) γ=2α δ=2β
Так как углы у прямоугольника все равны друг другу, вокруг него можно описать окружность. Центр окружности будет находиться в точке пересечения диагоналей, и следовательно, радиус описанной окружности будет равен половине диагонали. (рис.56.3) R=d/2=√(a^2+b^2 )/2
Геометрические фигуры. Прямоугольник. Формулы.
Диагонали прямоугольника.
Диагонали прямоугольника имеют одинаковую длину.
Диагонали прямоугольника делятся точкой пересечения пополам.
Длина диагонали прямоугольника можно вычислить по теореме Пифагора. И она равняется квадратному корню из суммы квадратов длины и ширины.
Формулы для вычисления длины диагонали прямоугольника:
1. Формула диагонали прямоугольника через 2 стороны прямоугольника (по теореме Пифагора):
2. Формула диагонали прямоугольника через площадь и сторону:
3. Формула диагонали прямоугольника через периметр и сторону:
4. Формула диагонали прямоугольника через радиус окружности (описанной):
5. Формула диагонали прямоугольника через диаметр окружности (описанной):
6. Формула диагонали прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу:
7. Формула диагонали прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны, которая прилегает к этому углу:
8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника:
Признаки прямоугольника.
— Если диагонали его имеют одинаковую длину.
— Если квадрат диагонали параллелограмма равняется сумме квадратов смежных сторон.
— Если углы параллелограмма имеют одинаковую величину.
Стороны прямоугольника.
Формулы для определения длин сторон прямоугольника:
1. Формула стороны прямоугольника (длина и ширина прямоугольника) через диагональ и еще одну сторону:
2. Формула стороны прямоугольника (длина и ширина прямоугольника) через площадь и еще одну сторону:
3. Формула стороны прямоугольника (длина и ширина прямоугольника) через периметр и еще одну сторону:
4. Формула стороны прямоугольника (длина и ширина прямоугольника) через диаметр и угол α:
5. Формула стороны прямоугольника (длина и ширина прямоугольника) через диаметр и угол β:
Окружность, описанная вокруг прямоугольника.
Формулы определения радиуса окружности описанной вокруг прямоугольника:
1. Формула радиуса окружности, которая описана около прямоугольника через 2-е стороны:
2. Формула радиуса окружности, которая описана около прямоугольника через периметр квадрата и сторону:
3. Формула радиуса окружности, которая описана около прямоугольника через площадь квадрата:
4. Формула радиуса окружности, которая описана около прямоугольника через диагональ квадрата:
5. Формула радиуса окружности, которая описана около прямоугольника через диаметр окружности (описанной):
6. Формула радиуса окружности, которая описана около прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу:
7. Формула радиуса окружности, которая описана около прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны у этого угла:
8. Формула радиуса окружности, которая описана около прямоугольника через синус острого угла между диагоналями и площадью прямоугольника:
Угол между стороной и диагональю прямоугольника.
Формулы для определения угла между стороной и диагональю прямоугольника:
1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону:
2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями:
Угол между диагоналями прямоугольника.
Формулы для определения угла меж диагоналей прямоугольника:
1. Формула определения угла меж диагоналей прямоугольника через угол между стороной и диагональю:
2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ: