как узнать высоту прямоугольного треугольника
Высота в прямоугольном треугольнике
Вспомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.
В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.
Один из типов экзаменационных задач банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:
Иными словами, каждый из трех углов треугольника равен одному из углов треугольника (и треугольника ). Треугольники и называются подобными. Давайте нарисуем их рядом друг с другом.
Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?
Ты нашел то, что искал? Поделись с друзьями!
(поскольку значение синуса острого угла положительно). Тогда:
Нам известно также, что:
Решая эту систему из двух уравнений, найдем:
Запишем площадь треугольника АВС двумя способами:
Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений.
Свойства высоты прямоугольного треугольника
В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.
Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые ( Содержание скрыть
Свойства высоты в прямоугольном треугольнике
Свойство 1
В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.
Третья высота (h3) опускается на гипотенузу из прямого угла.
Свойство 2
Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.
Свойство 3
Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.
3. △ABD ∼ △ADC по двум равным углам: ∠ABD = ∠DAC, ∠BAD = ∠ACD.
Доказательство: ∠BAD = 90° – ∠ABD (ABC). В то же время ∠ACD (ACB) = 90° – ∠ABC. Следовательно, ∠BAD = ∠ACD.
Аналогичным образом доказывается, что ∠ABD = ∠DAC.
Свойство 4
В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:
1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:
2. Через длины сторон треугольника:
Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :
Примечание: к прямоугольному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.
Пример задачи
Задача 1
Гипотенуза прямоугольного треугольника поделена высотой, проведенной к ней, на отрезки 5 и 13 см. Найдите длину этой высоты.
Решение
Воспользуемся первой формулой, представленной в Свойстве 4:
Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Найдите длину высоты, проведенной к гипотенузе.
Решение
Для начала найдем длину гипотенузы по теореме Пифагора (пусть катеты треугольника – это “a” и “b”, а гипотенуза – “c”):
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, с = 15 см.
Теперь можно применить вторую формулу из Свойства 4, рассмотренного выше:
Общие сведения
Следует отметить, что в геометрии существуют элементы, используя которые можно строить простые и сложные фигуры. Простейшим из них считается точка. С ее помощью можно создать прямую, луч, отрезок и угол. Точкой называется базовый «кирпич» геометрии, позволяющий осуществлять построение других элементов математической науки.
Луч — разновидность прямой линии, имеющей только одну границу (точку). Из последней исходит прямая в бесконечность. Примером этой модели является Солнце, испускающее пучки световой энергии. Оно является источником света, который может проходить не только через Солнечную систему, но и уходить за ее пределы в бесконечность (космическое пространство). Луч обозначается также строчной литерой. Однако точку-источник следует обозначать прописной буквой.
Плоским углом называется элементарная фигура, состоящая из общей точки и двух лучей, исходящих из нее и не лежащих на одной прямой. Измеряется в градусах и радианах. Далее следует разобрать виды прямоугольных треугольников.
Прямоугольный треугольник
Прямоугольным называется треугольник, имеющий угол, градусная мера которого эквивалентна 90. Он состоит из трех сторон, вершин и углов. К дополнительным параметрам можно отнести следующие:
Периметр — вспомогательная величина, характеризующая суммарное значение сторон фигуры. Существует также понятие полупериметра. Последним называется полусумма всех его сторон. Площадью называется характеристика треугольника, показывающая его размерность.
Высота в прямоугольном треугольнике, проведенная к гипотенузе — отрезок, опущенный перпендикулярно относительно этой стороны. Ее еще называют проекцией. Медиана — отрезок, соединяющий вершину с серединой стороны. Если она проведена из прямого угла, то эквивалентна половине гипотенузы. Биссектрисой является некоторая прямая, которая делит искомый угол на два равных значения.
Следует отметить, что этот тип треугольника бывает двух видов — разносторонний и равнобедренный. В последнем три последних параметра не совпадают (медиана, высота и биссектриса).
Следует рассмотреть свойства высоты в прямоугольном треугольнике равнобедренного типа. Она является медианой и биссектрисой. Далее следует обратить внимание на теорему, которая применяется для взаимосвязи сторон фигуры.
Теорема Пифагора
Для удобства треугольник следует обозначить символом «Δ». Связь между сторонами прямоугольного Δ была открыта древнегреческим ученым Пифагором. Утверждение имеет следующую формулировку: в произвольном прямоугольном Δ (со сторонами a, b и c) должно выполняться равенство между квадратом гипотенузы c и алгебраической суммой квадратов двух катетов a и b. Следует отметить, что при несоблюдении этого условия заданная фигура не содержит прямой угол. Математическая запись теоремы имеет такой вид: a^2 + b^2 = c^2.
Доказательств теоремы существует огромное количество, поскольку применяются различные подходы. Однако наибольшей популярностью пользуется способ, полученный из аксиом. Кроме того, дополнительно применяется алгебраическая методика. Для выполнения операции по доказательству соотношения a^2 + b^2 = c^2 необходимо построить прямоугольный Δ с такими сторонами: BC = a, AC = b и AB = c. После этого проводится высота к гипотенузе из вершины, которая является точкой пересечения двух катетов.
В результате образовались два равных угла ∠АНС и ∠ВНС. Кроме того, они являются прямыми по свойству высоты. Затем нужно рассмотреть Δ АВС и Δ АСН (Δ СВН), которые подобны по двум углам. На основании признака подобия можно вывести такие соотношения в виде пропорций:
Утверждение о высоте
Для прямоугольного Δ и высоты была выведена специальная теорема, позволяющая оптимизировать процесс вычисления основных его параметров. Ее формулировка имеет следующий вид: в прямоугольном ΔABC высота CE, опущенная на гипотенузу, делит ее по соотношению квадратов катетов к частям гипотенузы. Для доказательства нужно использовать такой алгоритм:
Теорема доказана. Существуют и другие утверждения о высоте в прямоугольном Δ. Их необходимо также рассмотреть, но без доказательств.
Тригонометрические функции
Полезными при решении различных задач считаются тригонометрические функции. Их всего четыре:
Математики выделяют 4 обратные тригонометрические функции: arcsin, arccos, arctg и arcctg. Применяются они, когда получено одно из значений тригонометрической функции. На основании этого можно найти градусную меру угла. Расчет выполняется с использованием специальных таблиц (Брадиса) или при помощи онлайн-калькуляторов.
Другие соотношения
Формулы для нахождения длины высоты происходят от некоторых теорем. Их необходимо знать, поскольку это позволит существенно сэкономить время и избежать множества ошибок при вычислениях. Для этих целей необходимо начертить прямоугольный ΔABC, у которого ∠BAD = 90, а больший катет эквивалентен величине а. Основные теоремы о высоте, проведенной из прямого угла, имеют такие формулировки:
Следует отметить, что величину размерности можно найти из производных формул: S = (1/2) * c^2 * sin(∠CBA) * sin(∠BAC) = (1/2) * c^2 * sin(∠CBA) * cos(∠CBA) = (1/2) * c^2 * sin(∠BAC) * cos(∠BAC) = (1/2) * a^2 * tg(∠BAC) = (1/2) * a^2 * ctg(∠CBA).
Примеры решения задач
Для закрепления теоретических знаний специалисты рекомендуют решить несколько задач. Они делятся на простые и сложные. Первые решаются при помощи одной или нескольких элементарных операций. Таких примеров в интернете очень много. Однако попадаются и сложные варианты, которые позволяют использовать полученные знания на все 100%.
В интернете встречаются онлайн-приложения, позволяющие найти решение. Этот инструмент нужно использовать для проверки результата. Хотя многие им злоупотребляют, а затем не получают правильного результата. Для начала необходимо взять готовый решенный пример и ознакомиться с ним. Далее попытаться воспроизвести его на бумаге. Подсматривать в исходник нельзя. При помощи такого приема происходит формирование алгоритма решения в головном мозге.
Сложное задание
Условие задачи следующее: имеется ΔMNO (∠MNO = 90) с высотой NP и стороной NM = 3, а также с известным значением тригонометрической функции cos между большим катетом и гипотенузой (cos(∠NOM) = (35)^(1/2) / 6). Следует найти OP. Для этого необходимо следовать такому алгоритму:
На основании пятого пункта можно сделать вывод, что длина искомого отрезка равна 17,5 (ед). Если проанализировать решение упражнения, то станет понятно, что очень часто применяются соотношения на основе тригонометрических функций.
Уровень турбо
В некоторых источниках задачи повышенной сложности называют «для турбо». К ним принадлежат все типы, которые имеют минимальный объем известных данных. Пусть дан равнобедренный ΔSTU (∠STU = 90). Гипотенуза на 2 больше катета. Необходимо найти его высоту TV, проведенную из прямого угла. Решение следует выполнять по такой инструкции:
Следует отметить, что в скобках необходимо указывать единицу измерения. Если размерность последней не дана, то нужно указывать ее условно.
Таким образом, для решения сложных задач по геометрии следует знать формулу высоты в прямоугольном треугольнике. Это позволяет оптимизировать решение и не совершать ошибок при вычислениях.
Формулы для нахождения высоты треугольника
В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.
Нахождение высоты треугольника
Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.
Высота в разностороннем треугольнике
Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:
1. Через площадь и длину стороны
где S – площадь треугольника.
2. Через длины всех сторон
где p – это полупериметр треугольника, который рассчитывается так:
3. Через длину прилежащей стороны и синус угла
4. Через стороны и радиус описанной окружности
где R – радиус описанной окружности.
Высота в равнобедренном треугольнике
Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:
Высота в прямоугольном треугольнике
Высота, проведенная к гипотенузе, может быть найдена:
1. Через длины отрезков, образованных на гипотенузе
2. Через стороны треугольника
Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.
Высота в равностороннем треугольнике
Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:
Примеры задач
Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.
Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:
Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.
Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:
Высота прямоугольного треугольника
Высота прямоугольного треугольника, проведенная к гипотенузе, может быть найдена тем или иным способом в зависимости от данных в условии задачи.
Длина высоты прямоугольного треугольника, проведенной к гипотенузе, может быть найдена по формуле
или, в другой записи,
где BK и KC — проекции катетов на гипотенузу (отрезки, на которые высота делит гипотенузу).
Высоту, проведенную к гипотенузе, можно найти через площадь прямоугольного треугольника. Если применить формулу для нахождения площади треугольника
(половина произведения стороны на высоту, проведенную к этой стороне) к гипотенузе и высоте, проведенной к гипотенузе, получим:
Отсюда можем найти высоту как отношение удвоенной площади треугольника к длине гипотенузы:
Так как площадь прямоугольного треугольника равна половине произведения катетов:
То есть длина высоты, проведенной к гипотенузе, равна отношению произведения катетов к гипотенузе. Если обозначить длины катетов через a и b, длину гипотенузы — через с, формулу можно переписать в виде
Так как радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы, длину высоты можно выразить через катеты и радиус описанной окружности:
Поскольку проведенная к гипотенузе высота образует еще два прямоугольных треугольника, ее длину можно найти через соотношения в прямоугольном треугольнике.
Из прямоугольного треугольника ABK
Из прямоугольного треугольника ACK
Длину высоты прямоугольного треугольника можно выразить через длины катетов. Так как
по теореме Пифагора
Если возвести в квадрат обе части равенства:
можно получить еще одну формулу для связи высоты прямоугольного треугольника с катетами: