как узнать заряд атома положительный или отрицательный

III. Основы электродинамики

Тестирование онлайн

Электрический заряд

Нам приходится буквально отлеплять одну от другой свежевыстиранные и доставаемые из сушилки вещи, или когда мы никак не можем привести в порядок наэлектризованные и буквально встающие дыбом волосы. А кто не пробовал подвесить воздушный шарик к потолку, после трения его о голову? Подобное притяжение и отталкивание является проявлением статического электричества. Подобные действия называются электризацией.

Рассмотрим атом. Атом состоит из ядра и, летающих вокруг него, электронов (на рисунке синие частицы). Ядро состоит из протонов (красные) и нейтронов (черные).

как узнать заряд атома положительный или отрицательный. im1. как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-im1. картинка как узнать заряд атома положительный или отрицательный. картинка im1..

как узнать заряд атома положительный или отрицательный. im2. как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-im2. картинка как узнать заряд атома положительный или отрицательный. картинка im2. как узнать заряд атома положительный или отрицательный. form1. как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-form1. картинка как узнать заряд атома положительный или отрицательный. картинка form1.

Для того, чтобы имелся свободный протон, необходимо, чтобы разрушилось ядро, а это означает разрушение атома целиком. Такие способы получения электрического заряды мы рассматривать не будем.

Тело становится заряженным, когда оно содержит избыток одних или иных заряженных частиц (электронов, положительных или отрицательных ионов).

Закон сохранения электрического заряда

Алгебраическая сумма электрических зарядов тел или частиц остается постоянной при любых процессах, происходящих в электрически замкнутой системе.

как узнать заряд атома положительный или отрицательный. im4. как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-im4. картинка как узнать заряд атома положительный или отрицательный. картинка im4. как узнать заряд атома положительный или отрицательный. im3. как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-im3. картинка как узнать заряд атома положительный или отрицательный. картинка im3.

На рисунке пример закона сохранения электрического заряда. На первой картинке два тела разноименного заряда. На втором рисунке те же тела после соприкосновения. На третьем рисунке в электрически замкнутую систему внесли третье нейтральное тело и тела привели во взаимодействие друг с другом.

В каждой ситуации алгебраическая сумма заряда (с учетом знака заряда) остается постоянной.

Главное запомнить

Источник

О зарядах элементарных частиц

Полученный результат говорит о том, что электрон действительно обладает единичным зарядом с небольшой поправкой в 0,1 %, а вот протон имеет заряд не +1, а +2,793, что выглядит весьма странно, так как нас учили совсем другому. И самое главное, заряд элементарной частицы, оказывается, может быть и дробным, а не обязательно целым.

Ещё интересней ситуация с нейтроном. Нейтрон по сути своей представляет собой вырожденный атом водорода, который образуется во время распада атомного ядра и имеет заряд равный – 1,913. Учитывая заряд электрона, в момент формирования нейтрона протон имеет заряд равный – 0,912. Т.е. он из положительно заряженной частицы неожиданно превращается в отрицательную, и приобретает при этом 3,704 отрицательного заряда.

Все эти метаморфозы с изменением и дроблением зарядов современная наука ни как не объясняет и старается этот вопрос публично не обсуждать.

Итак, анализ магнитных свойств элементарных частиц с высокой степенью уверенности позволяет утверждать:

1. Принятый на сегодня элементарный заряд фактически не является элементарным. Само понятие элементарного заряда бессмысленно, так как в природе могут существовать дробные заряды любой величины, в том числе и исчезающе малые.
2. Знак заряда протона не является постоянным и может меняться с положительного на отрицательный под воздействием внешних факторов.
3. Природа электрического заряда так на сегодня и не познана.

Возможно ответ, на вопрос: что представляет собой электрический заряд; следует искать в торовой модели элементарных частиц.

Предлагаемая торовая модель базируется на следующих постулатах:

Протон и электрон могут быть представлены в виде торов, со следующими характеристиками [3]:

Характеристики тора протона вычисляются из условия размещения внутри него 1836 электронов в свёрнутом виде спиралью Архимеда по плоскостям сечения тора. В этом случае площадь, которую занимает свёрнутый электрон определяется из выражения:

Sе = L(e) * 2r = 2,426*10^(-12) * 2 * 1,153*10^(-20) = 5,594*10^(-32) кв. м

Принимаем коэффициент заполнения площади на уровне 0,8, тогда площадь сечения протона для размещения в нём электрона равна Sp = 6,993*10^(-32) кв. м, откуда радиус сечения равен r = 1,492*10^(-16) м. Таким образом, протон имеет следующие характеристики:

Электрон, судя по его характеристикам, представляет собой очень узкую трубку огромного диаметра в 1836 раз большего диаметра протона и в 12940 раз меньшего сечения.

Внутри этой трубки в виде двух потоков двигается некая материя [4]. Эти два потока перекручены между собой таким образом, что один поток вращается по часовой стрелке по ходу движения, а другой против. До тех пор пока оба потока уравновешенны по массе, заряд электрона нейтрален.

Если одно из направлений вращения материи исчезает, и весь поток внутренней материи электрона вращается только в одном направление, по часовой стрелке или против, электрон приобретает электрический заряд.

Но существуют ситуации, когда только часть потока меняет направление своего вращения, тогда в зависимости от соотношения масс оставшихся потоков устанавливается и соответствующий заряд электрона.

Так заряд протона составляет +2,793. Это означает, что в его составе два электрона с зарядами +1 не скомпенсированы, т.е. положительно заряженных электронов (позитронов) в составе протона на 2 больше чем отрицательных, и один нейтральный электрон приобрёл заряд +0,793, став частично позитроном.

Для того чтобы получился заряд равный +0,793, поток материи, который создаёт отрицательный заряд должен уменьшиться. Причём отрицательный поток является компенсатором для такого же объёма положительного потока. Поэтому, что бы получился итоговый положительный поток в 79,3 % от общего потока материи в электроне, оставшиеся 20,7 % потока должны быть суммой двух равных разновращающихся потоков. Иными словами отрицательный поток должен составлять 10,35%, а положительный соответственно 89,65 %. Итак перераспределение массы потоков с разными направлениями вращения с 50% до 89,65% в положительном направлении, и с 50% до 10,35% в отрицательном направлении приводит к тому, что электрон (позитрон) приобретает положительный заряд равный +0,793.

Аналогично происходит формирование дополнительного отрицательного электрона в момент образования нейтрона.

Заряд нейтрона равен –1,913. Заряд равный –1 вносится электроном, находящимся на нестационарной орбите протона. В результате суммарный заряд протона в момент выхода из ядра равен – 0,913, а до выхода из ядра он был соответственно +2,793. Следовательно, в момент разрушения ядра протон изменил свой заряд с +2,793 до – 0,913. Иными словами он приобрёл в это время 3,706 отрицательных зарядов. Три из них это нейтральные электроны, соответствующим образом, перешедших в состояние отрицательно заряженных электронов. Четвёртый нейтральный электрон приобрёл неполный отрицательный заряд путём вовлечения большей части положительного потока в противоположное направление вращения. В результате положительный поток снизился с 50% до 4,35%, а отрицательный соответственно увеличился с 50% до 95,65%

Таким образом, торовая модель в состоянии объяснить наличие не только дробных зарядов, но и их изменение под воздействием внешних факторов.

Также следует отметить, что торовая модель допускает наличие у протона не только положительного, но и отрицательного заряда, что экспериментально уже обнаружено, а также и нейтрального, который вероятно будет обнаружен в будущем.

Для того чтобы понять, как электрон значительно большего диаметра размещается в достаточно небольшом протоне необходимо принять допущение, что электрон является более древней формой материи по отношению к протону и в момент своего образования он формировался в условиях сверхвысоких плотностей материи. И хотя он уже изначально приобрёл форму тора, но эта форма была свёрнута в спираль Архимеда и в виде плоского диска разместилась в сечении протона.

Таким образом, протон собственно представляет собой не единое цельное тело, как это считается сегодня, а батарею из 1836 электронов упакованных в виде дисков спиралей Архимеда и вращающихся вокруг центра сечения тора протона.

Суммарный заряд протона составляет +2,793, при этом электроны располагаются в протоне симметрично по схеме:

[2] Ошибка вычисления элементарного заряда связана с ошибкой определения числа Авогадро. Подробнее о числе Авогадро см. http://www.proza.ru/2019/03/26/1450.

[4] Анализ природы этой материи выходит за рамки настоящей статьи.

Источник

Заряд ядра атома

как узнать заряд атома положительный или отрицательный. . как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-. картинка как узнать заряд атома положительный или отрицательный. картинка .

Понятие атома иего структуры

Многие могут утверждать, что химия— сложная наука, которая понятна далеко невсем. Ноесли серьезно засесть заучебники иначать ссамых азов, товсе окажется далеко нетаким мрачным. Первое, счего стоит начать— атом иего основные характеристики.

Атом— это танаименьшая частица всего, что нас окружает, которая несет всебе всю необходимую информацию,частица, определяющая характеристики изаряды. Долгое время ученые думали, что она неделима, едина, однако втечение долгих часов, дней, месяцев игодов проводились изучения, исследования иопыты, которые доказали, что атом также имеет свою структуру. Другими словами, этот микроскопический шарик состоит изеще меньших составляющих, которые влияют навеличину его ядра, свойства изаряд. Структураже этих частиц такова:

Последнее также можно разделить насовсем элементарные части, которые внауке именуют протонами инейронами, которых насчитывается четкое количество вкаждом конкретном случае.

Число протонов, которые есть вядре, указывает наструктуру оболочки, которая состоит изэлектронов. Эта оболочкаже, всвою очередь, вмещает всебя все необходимые свойства определенного материала, вещества либо предмета. Вычислить сумму протонов очень просто— достаточно знать порядковый номер наименьшей части вещества (атома) вовсем известной таблице Менделеева. Это значение еще называют атомным числом иобозначают латинской буквой «Z». Важно помнить, что протоны владеют позитивным зарядом, анаписьме это значение определяется как +1.

Нейроны— второе составляющее ядра атома. Это элементарная субатомная частица, которая ненесет никакого заряда вотличие отэлектронов или протонов. Нейроны были открыты в1932 году Дж. Чедвиком, зачтоон, спустя 3года, получил Нобелевскую премию. Вучебниках инаучных трудах ихобозначают как латинский символ «n».

Третья составляющая атома— электрон, который находится вмонотонном движении вокруг ядра, создавая таким образом облако. Именно эта частица самая легкая извсех известных современной науке, аэто значит, что изаряд еетакже наименьший.Обозначаетсяэлектрон написьме от −1.

как узнать заряд атома положительный или отрицательный. . как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-. картинка как узнать заряд атома положительный или отрицательный. картинка .

Именно соединение положительных инегативных частиц вструктуре, делает атом незаряженной или нейтрально заряженной частицей. Ядро, всравнении собщим размеров всего атома, очень маленькое, ноименно внем сосредоточен весь вес, что говорит оего высокой плотности.

Как определить заряд ядра атома?

Чтобы определить заряд ядра атома, нужно хорошо разбираться встроении, структуре самого атома иего ядра, понимать основные законы физики ихимии, атакже иметь навооружении периодическую таблицу Менделеева для определения атомного числа химического элемента.

Для того чтобы найти ирассчитать заряд ядра атома, нужно:

Это были основные советы ирекомендации для тех, кто пытается разобраться восновах естественных наук. Нуиеще немного формул.

Обозначениеядра атома внаучной сфере выглядит как Ze. Расшифровать это достаточно просто: Z— это тот номер, который присвоен элементу вовсем известной таблице Менделеева, еще его называют порядковым или зарядным числом. Иуказывает оно наколичество протонов вядре атома, аe— это всего лишь заряд протона.

Всовременной науке существуют ядра сразным значением зарядов: от1до118.

Еще одно важное понятие, которое нужно знать юным химикам— массовое число. Это понятие указывает наобщую суму заряда нуклонов (это тесамые мелкие составляющие части ядра атома химического элемента). Инайти это число можно, если воспользоваться формулой: A = Z + Nгде А— искомое массовое число, Z— количество протонов, аN— значение нейтронов вядре.

Чему равен заряд ядра атома брома?

Чтобы напрактике продемонстрировать, как найти заряд атома необходимого элемента (внашем случае, брома), стоит обратиться кпериодической таблице химических элементов инайти там бром. Его порядковыйномер 35. Это означает, что изаряд ядра его равен35, поскольку онзависит отчисла протонов вядре. Аначисло протонов указывает номер, под которым стоит химический элемент ввеликом труде Менделеева.

как узнать заряд атома положительный или отрицательный. emkAeQDj1Tp99vaXmDDXpVtQl0l6PCqB. как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-emkAeQDj1Tp99vaXmDDXpVtQl0l6PCqB. картинка как узнать заряд атома положительный или отрицательный. картинка emkAeQDj1Tp99vaXmDDXpVtQl0l6PCqB.

Приведем еще несколько примеров, чтобы вбудущем юным химикам ибыло проще рассчитать необходимые данные:

Перечислять все составляющие периодической таблицы Менделеева можно еще очень долго, ведьих (этих составляющих) очень много. Главное, что суть этого явления понятна, аесли нужно будет вычислить атомное число калия, кислорода, кремния, цинка, алюминия, водорода, бериллия, бора, фтора, меди, фтора, мышьяка, ртути, неона, марганца, титана, тостоит только обратиться ктаблице химических элементов иузнать порядковый номер того или иного вещества.

Источник

Атом. Ион

Текст является частью пособия по химии.
Автор текста – Анисимова Елена Сергеевна. https://vk.com/bch_5
Авторские права защищены. При копировании и передаче текста указание автора и ссылка на ВК обязательны.
Распространение и изучение текста приветствуется. – Давайте станем более информированными.
Курсивом набран текст пояснений, напоминаний или фактов на будущее. При первом чтении или спешке его можно не читать.
Справа расположены рекомендации.
Параграф 1: Элементарные частицы
Параграф 2: Атом
Параграф 3: Ионы
Параграф 1: Элементарные частицы
В природе есть вещицы, которые называют:
протонами, электронами и нейтронами.
Эти частицы относятся к элементарным частицам.
Эти три – основные, но есть и множество других.
Элементарные частицы очень маленькие по размерам, он не видны в микроскопы.
Масса элементарных частиц
Кратко: масса протона и нейтрона – по 1, масса электрона почти ноль.
Масса протона равна условной единице.
(См. определение атомной единицы массы).
Масса нейтрона почти равна массе протона, то есть тоже единице.
Масса электрона не ноль, но в 1836 раз меньше протона, и часто не учитывается.
Оформим эти сведения в виде маленькой таблицы для упрощения усвоения:
Протон Нейтрон Электрон
Масса 1 1 Почти 0
Заряды элементарных частиц (электрические заряды)
Кратко: заряд нейтрона – ноль, протона – плюс 1, электрона – минус 1.
Что такое электрический заряд?
Существует такое свойство тел, которое называют электрическим зарядом.
Наличие электрического заряда проявляется в способности реагировать на другие предметы, имеющие электрический заряд.
Реакция (заряженного тела на заряд другого) проявляется в том, что предмет, имеющий электрический заряд,
— или притягивается к другому заряженному предмету,
— или отталкивается от него.
Типы эл. зарядов.
Заряд бывает двух типов – один тип эл. заряда назван положительным, а другой тип – отрицательным.
Принято говорить, что положительный и отрицательный – разноимённые.
Положительный заряд притягивается к отрицательному (то есть разноимённые заряды притягиваются). Точнее, тела с такими зарядами.
Положительный от положительного отталкивается, отрицательный от отрицательного тоже отталкивается.
(То есть одноимённые отталкиваются – точнее, тела с одноимёнными зарядами).
Заряд нейтрона
У нейтрона нет электрического заряда, то есть он электронейтрален (отсюда и его название – нейтрон). То есть нейтрон не реагирует на частицы с эл. зарядом.
Заряды протона и нейтрона
У протона и электрона есть электрические заряды –
равные по величине, но противоположные по «знаку». –
Заряд протона считается положительным,
а заряд электрона считается отрицательным.
Величина заряда
Величина заряда протона или электрона принята за условную единицу.
Суммарный заряд протона и электрона равен нулю. (Сумма электро-нейтральна).
(Плюс один и минус один в сумме дают ноль.)
Когда число протонов равно числу электронов, то суммарный заряд равен нулю.
Если число протонов больше или меньше числа электронов – заряд не нулевой.
Таблицы «Заряды элементарных частиц»:
Протон Электрон Нейтрон
Заряд Плюс 1 Минус 1 0
Обобщение по свойствам элементарных частиц.
Таким образом, у нейтрона нет заряда, а у электрона почти нет массы.
Массы протона и нейтрона – по единице.
Заряды протона и электрона – по единице.
Свойства протона: масса 1 и заряд +1.
Свойства нейтрона: масса 1 и заряд 0.
Свойства электрона: масса 0 и заряд –1.
Обобщим сведения об основных свойствах элементарных частиц в таблице:
«Свойства элементарных частиц»
Протон Электрон Нейтрон
Масса 1 0 1
Заряд Плюс 1 Минус 1 Ноль
(нет заряда)
Это очень простые сведения.
Но из них есть множество важных выводов.
Из них выводится множество фактов. Так что эту таблицу – знать.
Элементарные частицы в природе
Потоки протонов и электронов распространяются от Солнца по всей Солнечной системе!
В каком виде существуют элементарные частицы в природе?
В «свободном виде» протоны и электроны есть в Солнце и многих других звёздах.
От Солнца протоны и электроны распространяются прочь от Солнца – по Солнечной системе. Этот поток заряженных частиц называют солнечным ветром.
Солнечный ветер оказывает влияние на жизнь людей:
он может приводить к сбоям техники, электроники, связи!
А если бы не атмосфера (воздушная оболочка Земли), то солнечный ветер мог бы погубить живые организмы Земли!
Но на Земле протоны, электроны и нейтроны обычно объединяются,
образуя системы: а-то-мы. (См. также ионы).
В космосе атомы тоже есть – в молекулярных облаках между звёздами.
Параграф 2: Атом
Протоны, электроны и нейтроны существуют в природе обычно не по отдельности,
а объединяются в единые системы.
Часто система из элементарных частиц содержит одинаковое число протонов и электронов.
Такая система из равного числа протонов и электронов называется атомом.

Атом тоже считается частицей, но уже не элементарной.
Атом – ключевое понятие в науках о веществах.
Часто в атоме есть и нейтроны. –
Иногда нейтронов в атоме столько же, сколько и протонов, иногда меньше (у протия), а иногда нейтронов намного больше, чем протонов; чем больше в атоме протонов – тем больше и нейтронов на долю протонов.
Протоны и электроны могут входить в состав единой системы,
которая называется атомом.
(Если протонов и электронов поровну).
Как уже сказано, число протонов и электронов в атоме всегда равное.
Из-за этого суммарный заряд протонов (он равен числу протонов со знаком плюс)
и суммарный заряд электронов (он равен числу электронов со знаком минус)
в сумме дают ноль – нейтральный заряд атома как целого или просто отсутствие заряда у атома.
Параграф 3: И-о-ны
Некоторые атомы могут присоединять к себе «лишние» электроны.
Некоторые атомы могут терять свои электроны (обычно от 1 до 7).
После потери электрона или присоединения электронов заряд атома перестаёт быть нулевым, и атом уже не атом!
Если атом теряет электрон или присоединяет к себе электрон, то он:
перестаёт быть нейтральным, перестаёт считаться атомом,
и получает название ИОН.
Ион не является нейтральной частицей.
Ион всегда имеет заряд, в отличие от атома.
Ион – это бывший атом; зарядившийся атом.
Атом плюс или минус электрон(ы) = ион

Но. Зарядившиеся молекулы тоже называют ионами – см. далее!
Какие бывают ионы…
Если атом теряет электроны (а вместе с ними и отрицательные заряды),
то в возникшем ионе:
имеется дефицит отрицательных зарядов (по сравнению с бывшим атомом),
что даёт иону положительный заряд.
Кратко: потеря электронов атомом превращает его в положительный ион (катион).
Атом минус электрон(ы) = ион с положительным зарядом (катион)
Если атом присоединяет к себе электроны (и отрицательный заряд вместе с ними),
то в возникшем ионе имеется избыток отрицательных зарядов.
Кратко: приобретение электронов атомом превращает его в отрицательный ион (анион).
Атом плюс электрон(ы) = ион с отрицательным зарядом (анион)
Явление превращения атома в ион (в результате присоединения электрона или потери электрона) называется ионизацией.
Где встречаются ионы
Ионы есть везде – на Земле, в воле, почве, воздухе, организме.
В Солнце в основном ионы, а атомов мало или нет, то есть вещество в ионизированном состоянии.
Типы атомов
Сколько бывает протонов в атомах?
Об этом – в файле «Типы атомов. Химические элементы».

Источник

как узнать заряд атома положительный или отрицательный. userinfo v8. как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-userinfo v8. картинка как узнать заряд атома положительный или отрицательный. картинка userinfo v8.double_break

Всё и ничто

« С тех пор прошло 80 лет и я по-прежнему
задаю себе этот же вопрос
(прим. — Что же такое электричество?),
но не в состоянии ответить на него »

как узнать заряд атома положительный или отрицательный. 101520 900. как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-101520 900. картинка как узнать заряд атома положительный или отрицательный. картинка 101520 900.
Нервная система.
Следует начать рассмотрение с клетки. Она не только представляет собой самостоятельную хозяйственную единицу практически со всеми функциями живого организма, но и является началом начал. В первой, единственной пока клетке, из которой впоследствии должен развиться организм, заложена вся информация как о ходе этого строительства, так и о свойствах будущего организма. Более того, в самое последнее время ученые на основании электромагнитных исследований приходят к выводу, что практически все об организме можно узнать, изучая исключительно только клетку.

Так что же представляет собой клетка живого организма?
Клетка окружена мембраной, функции клеточных мембран очень серьёзные, от них в организме зависит очень многое. В настоящее время сформировалась целая наука, которая изучает мембраны клеток, — мембранология. Внутри клетки находится ядро. В клетке имеются колонии, окруженные двойной мембраной, которые называются лизосомами. Если лизосомы выберутся за пределы своей колонии, то они начнут разрушать все попадающиеся им на пути вещества, из которых состоит клетка. Через короткое время они способны уничтожить и саму клетку.

Зачем же клетке нужны лизосомы, которые содержатся в специальных изоляторах за двойной мембраной? Они нужны на тот случай, если понадобится убрать ненужные разлагающиеся вещества в клетке. Тогда они по команде из ядра делают это. Часто эти пузырьки в клетке называют мусорщиками. Но если по какой-либо причине мембрана, которая их сдерживает, будет разрушена, эти мусорщики могут превратиться в могильщиков всей клетки. Забегая вперед, скажем, что таким разрушителем мембран может быть меняющееся магнитное поле во время магнитных бурь. Когда под его действием мембраны клеток разрушаются, лизосомы обретают свободу и делают свое черное дело. Имеются и другие факторы, способные разрушить эти мембраны, но их мы рассматривать здесь не будем.

В ядре клетки, которое занимает примерно третью часть всей клетки, размещен весь «управленческий аппарат». Это прежде всего знаменитая ДНК (дезоксирибонуклеиновая кислота). Она предназначена для хранения и передачи информации при делении клетки. Ядро содержит и значительное количество основных белков — ги-стонов, и немного РНК (рибонуклеиновой кислоты).

Клетки работают, строят, размножаются. Это требует энергии. Клетка сама же и вырабатывает нужную ей энергию. В клетке имеются энергетические станции. Они занимают площадь в 50—100 раз меньшую, чем площадь ядра клетки. Энергетические станции также обнесены двойной мембраной. Она предназначена не только для ограничения станции, но и является ее составной частью. Поэтому конструкция стенок отвечает технологическому процессу получения энергии.

Энергию клетки вырабатывают в системе клеточного дыхания. Она выделяется в результате расщепления глюкозы, жирных кислот и аминокислот. Но самым главным поставщиком энергии в клетке является глюкоза. Процесс превращения глюкозы в углекислоту, при котором выделяется энергия, идет с участием электрически заряженных частиц— ионов. Этот процесс называется биологическим окислением. Можно сказать, что энергия в клетке производится по электрической технологии. Поясним, что собой представляет частица ион.

Любой атом или молекула является электрически нейтральной частицей. Каждый атом имеет такой же по величине положительный электрический заряд (он расположен в ядре атома), как и отрицательный. Последний несут на себе электроны, вращающиеся вокруг ядра. Пока положительные заряды скомпенсированы отрицательными— атом является электрически нейтральным. Если от атома оторван один (или больше) электрон, то в нем преобладают положительные заряды ядра. Говорят, что атом при этом превратился в положительно заряженный ион. Атом становится отрицательным ионом в том случае, если к нему «прилипнет» лишний электрон. То же самое относится и к молекулам, то есть имеются положительные и отрицательные молекулярные ионы. В организме человека имеются как разные (положительные и отрицательные) ионы, так и электроны.

АТФ образуется в процессе биологического окисления из тех же веществ, на которые он расщепляется при обратном процессе— фосфорилировании, а именно: неорганического фосфата и АДФ. Поэтому, для того чтобы протекал процесс биологического окисления, необходимо наличие на всех стадиях этого процесса АДФ и неорганического фосфата. Но эти вещества по мере протекания процесса окисления непрерывно расходуются, поскольку из них образуется запас энергии в виде АТФ.

Процесс окислительного фосфорилирования протекает одновременно с процессом биологического окисления. Оба эти процесса тесно связаны между собой и протекают благодаря участию электрически заряженных частиц (ионов и электронов). С этими электрическими процессами связана вся технология получения энергии в клетках. Чёткая, сбалансированная сопряженность этих процессов является залогом существования и нормального функционирования клетки. Но если по каким-либо причинам в клетке создаются такие условия, что процесс биологического окисления может протекать независимо от процесса фосфорилирования, то нормальное функционирование и существование клетки становится невозможным. Дело в том, что процесс производства энергии при этом оказывается никак не связанным с процессом её потребления. Поскольку магнитное поле оказывает влияние на заряженные частицы (ионы и электроны), участвующие в этих процессах, то тем самым оно может влиять и на ход самого процесса образования энергии внутри клетки.

Вторым жизненно важным вопросом для клетки является вопрос её общения с внешним миром, то есть регулирование входа в клетку и выхода из нее через мембрану, окружающую клетку. И этот вопрос решен с использованием технологии, созданной на электрической основе. Другими словами, вход в клетку и выход из неё регулируются электричеством. Этот вопрос исключительно важен в смысле влияния космических факторов на здоровье человека. Чтобы заострить внимание читателя на этом вопросе, скажем здесь, забегая вперед, что под действием космических факторов происходит изменение в пропускной системе через мембраны клеток, то есть меняется проницаемость биологических мембран. То, что такие незапланированные изменения режима входа в клетку и выхода из неё происходят в периоды магнитных бурь, не может не сказаться на нормальной работе клетки, а значит, и на работе всего организма. Легко понять, что если из клетки из-за увеличения проницаемости мембраны вышли хотя бы частично нужные клетке вещества, то ничего хорошего в этом нет.

Мембрана клетки построена в два слоя из молекул фосфолипида. Образованная тонкая пленка находится в постоянном движении. К этой стенке с обеих сторон (изнутри и снаружи) примыкают белковые молекулы. Можно сказать, что стенка из молекул фос-фолипидов выстлана молекулами белков, которые не упакованы плотно, а составляют сравнительно редкий узор (кружева). Этот узор имеет одинаковую форму у всех клеток однородной ткани, скажем ткани печени. Клетки почек имеют другой узор, клетки сердца — третий и т. д. По этой причине разнородные клетки не слипаются между собой. В каждом из таких узоров имеются пустоты, дырочки, поры. Через эти поры, проходы в узорах, могут проникать в клетку крупные молекулы, способные растворяться в жирах, из которых состоит мембрана.

Как же создается и функционирует эта батарейка в клетке?

Внутри клетки содержатся в водном растворе в основном ионы калия, а вне её — ионы натрия. Однако внутри клетки наряду с ионами калия имеются (в меньшем количестве) и ионы натрия, поскольку те и другие проходят через мембрану клетки. Но поскольку ионы калия гораздо меньше ионов натрия, то они проходят через проходы в мембране наружу легче, чем ионы натрия, которые проходят через мембрану извне клетки внутрь. Внутри клетки остается столько же отрицательных зарядов, сколько ионов калия скопилось на наружной стороне мембраны. Поэтому в мембране (поперёк её) создается электрическое поле. Оно возникает в результате разности концентраций калия внутри и вне клетки. Это электрическое поле поддерживает разность потенциалов, которая не меняется с перемещением ионов натрия, так как проницаемость мембраны для них ничтожно мала. Возникшее таким путем электрическое поле увеличивает поток ионов калия внутрь клетки и уменьшает их поток наружу. Когда внутрь клетки будет входить столько же ионов калия, сколько их выходит наружу, наступит динамическое равновесие. При этом на наружной стороне мембраны имеется плюс, а на внутренней — минус.

Таким образом, не только технология образования энергии в клетке, но и регулировка ее общения с внешним миром происходит благодаря действию электрического потенциала, создаваемого движением и определенным распределением электрических зарядов.

Нелишне здесь описать, как клетка реагирует на раздражающий сигнал извне.

Так, если на клетку в результате внешнего раздражения поступает импульс электрического тока (то есть биотока), то мембрана на непродолжительное время увеличивает свою проницаемость для ионов натрия. Они получают возможность проходить через мембрану. До этого во внеклеточном пространстве ионов натрия было примерно в 100 раз больше, чем ионов калия. При увеличении проницаемости мембраны клетки ионы натрия устремляются внутрь клетки. Так как их электрический заряд положительный и внутри клетки их становится большинство, то на внутренней стенке мембраны вместо минуса (который создавали отрицательные ионы калия) образуется плюс за счет ионов натрия. Происходит переполюсовка электрической батарейки, электроды которой подключены к внешней и внутренней сторонам мембраны клетки. Через некоторое время после прекращения действия на клетку внешнего раздражителя увеличивается проницаемость мембраны для ионов калия, а условия прохода ионов натрия через мембрану ухудшаются. Поэтому восстанавливается такое же положение, какое было до действия раздражителя, а именно: к внутренней стороне мембраны приложен минус, а к наружной— плюс. Таким положение остается до начала действия следующего раздражителя.

Главный для нас вывод из всего вышесказанного состоит в том, что проходы в мембранах, через которые идет обмен клетки с внешним миром, изменяются под действием электрических (биологических) токов, и они по-разному пропускают ионы в зависимости от величины этих токов.

Внешнее магнитное поле может действовать на электрические токи и на движение зарядов (ионов). Значит, оно способно влиять на процесс общения клетки с внешним миром. Оно может нарушать этот процесс, а значит, и условия функционирования и даже существования клетки.

В ответ на внешний раздражитель клетка моментально переключает полюса своей электрической батареи. Это приведет к возникновению электрического импульса.
Зачем клетке этот импульс?

Хотя мы и сравнивали нервные волокна с кабелями и проводами, но на самом деле они намного совершеннее кабелей. Они устроены специальным образом так, чтобы оптимально обеспечить распространение электромагнитных импульсов . Изучать их устройство было непросто. Недаром за исследование работы нейронов ученым была присуждена Нобелевская премия. Рассмотрим кратко, как работает нейрон.

Миелиновая оболочка вокруг нервного волокна является не просто изоляцией. Она выполняет и более сложные функции. Образована она специальными клетками так, что они многократно обвиваются вокруг нервного волокна и образуют своего рода муфту. В этих местах, где находится муфта, содержимое из клетки выдавливается. Соседний участок нервного волокна (аксона) изолируется тем же способом, но уже другой клеткой, поэтому миелиновая оболочка систематически прерывается. Таким образом, между соседними муфтами сам аксон не имеет изоляции и его мембрана контактирует с внешней средой. Эти участки между муфтами получили название перехватов Ранвье (по имени исследовавшего их учёного). Эти перехваты играют исключительно важную роль в процессе распространения электрических импульсов.
как узнать заряд атома положительный или отрицательный. 102081 600. как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-102081 600. картинка как узнать заряд атома положительный или отрицательный. картинка 102081 600.
Проследим механизм распространения нервного электрического импульса. Нервный импульс входит внутрь нервного волокна в возбужденном перехвате Ранвье и выходит из волокна через невозбужденный перехват. Если же выходящий ток превышает некоторую минимальную (пороговую) величину, то перехват под действием этого тока возбуждается и посылает новый электрический импульс по волокну. Таким образом, перехваты Ранвье являются генераторами импульсов электрического тока. Они играют роль промежуточных усилительных станций (ретрансляторов). Каждый следующий генератор возбуждается импульсом тока, который распространяется от предыдущего перехвата и посылает новый импульс дальше.

Перехваты Ранвье значительно ускоряют распространение нервных импульсов. В тех же нервных волокнах, которые не имеют миелиновой оболочки, распространение нервного импульса происходит медленнее из-за высокого сопротивления электрическому току.

Из всего сказанного выше ясно, что движущие силы нервного электрического импульса обеспечиваются разностью концентраций ионов. Электрический ток генерируется за счёт избирательного и последовательного изменения проницаемости мембран для ионов натрия и калия, а также вследствие энергетических процессов.

Заметим ещё одно обстоятельство. Клетки возбуждаются только в среде, в которой присутствуют ионы кальция. Величина нервного электрического импульса и особенно величина прохода (поры) в мембране зависят от концентрации ионов кальция. Чем меньше ионов кальция, тем меньше порог возбуждения. И когда в среде, окружающей клетку, кальция совсем мало, то генерацию электрических импульсов начинают вызывать незначительные изменения напряжения на мембране, которые могут возникать в результате теплового шума. Это, конечно, не может считаться нормальным.

Нервная система состоит из вегетативного отдела (который подразделяется на симпатический и парасимпатический) и соматического отдела. Последний подразделяется на периферический (нервные рецепторы и нервы) и центральный (головной и спинной мозг).

как узнать заряд атома положительный или отрицательный. 102536 600. как узнать заряд атома положительный или отрицательный фото. как узнать заряд атома положительный или отрицательный-102536 600. картинка как узнать заряд атома положительный или отрицательный. картинка 102536 600.

В толще головного мозга также имеются скопления нервных клеток, называемых подкорковыми центрами. Их деятельность связана с отдельными функциями нашего организма. Белое вещество ткани мозга состоит из густой сети нервных волокон, которые объединяют и связывают различные центры, а также из нервных путей, которые выходят из клеток коры и входят в неё.

Кора больших полушарий мозга связана нервными путями со всеми нижележащими отделами центральной нервной системы, а через них и со всеми органами. Поступающие с периферии импульсы доходят до той или иной точки коры головного мозга. В коре происходит оценка информации, поступающей с периферии по различным путям, её сопоставление с предшествующим опытом, принимаются решения, диктуются действия.

Электрические (нервные) импульсы, возникающие в результате внешних воздействий, передаются по чувствительным проводникам в составе соматических нервов в спинной мозг, который представляет собой главный кабель организма. По восходящим путям спинного мозга нервное возбуждение поступает в головной мозг, а по нисходящим следуют команды на периферию. Двигательные нервные проводники, как правило, достигают органов в составе тех же соматических нервов, по которым идут чувствительные проводники. Во внутренней части спинного мозга сгруппированы многочисленные тела нервных клеток, которые образуют похожее на бабочку (в поперечном разрезе) серое вещество. Вокруг него и располагаются лучи и канатики, составляющие мощную систему восходящих и нисходящих проводящих путей.

Пути, по которым идут указания из центра на периферию, идут не только по соматическим нервам, но и по симпатическим и парасимпатическим нервам. При этом симпатические нервные клетки, аксоны которых формируют эти нервы, сгруппированы в симпатических узлах (ганглиях), которые располагаются вдоль позвоночника с двух сторон в виде цепочек. Парасимпатические нейроны образуют узлы уже в самих иннервируемых ими органах или вблизи них (кишечник, сердце и т. д.).

Таламус (зрительный бугор) является главным информационным центром головного мозга. Он связан со всеми другими отделами мозга и с корой больших полушарий. Таламус — наиболее массивное и сложное подкорковое образование больших полушарий, куда поступает множество импульсов. Здесь они как бы фильтруются, и в кору мозга поступает только небольшая их часть. На большинство импульсов ответ даёт сам таламус, причем нередко через расположенные под ним центры, называемые гипоталамусом, или подбугорьем. В гипоталамусе сконцентрировано более 150 нервных ядер, имеющих многочисленные связи как с корой больших полушарий, так и с другими отделами головного мозга. Это позволяет гипоталамусу играть ключевую роль в регуляции основных процессов жизнедеятельности и поддержании необходимых условий существования.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *