Атомная электростанция для чего нужна и как работает
Атомная электростанция: устройство и влияние на окружающую среду
АЭС: от прошлого до настоящего
Атомная электростанция – предприятие, представляющее собой совокупность оборудования и сооружений для выработки электрической энергии. Специфика данной установки заключается в способе получения тепла. Необходимая для выработки электроэнергии температура возникает в процесса распада атомов.
Роль топлива для АЭС выполняет чаще всего уран с массовым числом 235 (235U). Именно потому, что этот радиоактивный элемент способен поддерживать цепную ядерную реакцию, он используется на атомных электрических станциях, а также применяется в ядерном оружии.
Страны с наибольшим количеством АЭС
За последние 10 лет в мире в эксплуатацию было введено 47 энергоблоков, почти все из них находятся либо в Азии (26 — в Китае), либо в Восточной Европе. Две трети строящихся на данный момент реакторов приходятся на Китай, Индию и Россию. КНР осуществляет самую масштабную программу строительства новых АЭС, ещё около полутора десятка стран мира строят АЭС или развивают проекты их строительства.
Помимо США, к списку наиболее продвинутых в области ядерной энергетики стран относят:
Принцип работы АЭС
Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.
Существуют различные виды ядерных реакторов:
По принципу устройства реакторы также делят на:
Устройство и структура атомной электростанции. Как работает АЭС?
Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:
За данным корпусом следует зал. В нем обустроены парогенераторы и находится основная турбина. Сразу же за ними располагаются конденсаторы, а также линии передачи электричества, выходящие за границы территории.
Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.
Принцип работы АЭС
На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:
Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре
330 °C [7] ). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).
И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.
Защитные механизмы АЭС
Все атомные электростанции в обязательном порядке оснащаются комплексными системами безопасности, например:
Кроме того, реактор может аварийно остановиться в случае чрезвычайной ситуации. В этом случае автоматическая защита прервет цепные реакции, если температура в реакторе продолжит подниматься. Эта мера впоследствии потребует серьезных восстановительных работ для возвращения реактора в строй.
После того как в Чернобыльской АЭС произошла опасная авария, причиной которой оказалось несовершенство конструкции реактора, стали больше внимания уделять защитным мерам, а также провели конструкторские работы для обеспечения большей надежности реакторов.
Катастрофа ХХІ века и её последствия
В марте 2011 года северо-восток Японии поразило землетрясение, вызвавшее цунами, которая в итоге повредила 4 из 6 реакторов АЭС «Фукусима-1».
Менее чем через два года после трагедии официальное количество погибших в катастрофе превышало 1500 человек, в то время как 20 000 человек до сих пор считаются пропавшими без вести, а еще 300 000 жителей были вынуждены оставить свои дома.
Были и пострадавшие, которые оказались не способны покинуть место происшествия из-за огромной дозы излучения. Для них была организована незамедлительная эвакуация, продолжавшаяся 2 дня.
Тем не менее, с каждым годом методы предотвращения аварий на АЭС, а также нейтрализации ЧП совершенствуются – наука неуклонно идёт вперёд. Тем не менее, будущее явно станет временем расцвета альтернативных способов получения электроэнергии – в частности, логично ожидать появления в ближайшие 10 лет орбитальных солнечных батарей гигантского размера, что вполне достижимо в условиях невесомости, а также прочих, в том числе революционных технологий в энергетике.
Немного об АЭС
Несмотря на то, что долгие годы не утихают споры вокруг атомных электростанций, большинство людей мало представляют себе, что это вообще за зверь, хотя наверняка знают какую-нибудь легенду про АЭС. В статье я попытаюсь в общих чертах рассказать, как это все работает. Каких-то тайн и разоблачений ждать не стоит, но, надеюсь, кто-нибудь узнает для себя что-то новенькое.
Все фотографии взяты из открытых источников. В статье будет описываются реакторы типа ВВЭР (водо-водяные энергетические реакторы), как самые распространенные.
Принцип работы
В активную зону реактора загружены тепловыделяющие сборки, состоящие из пучка циркониевых тепловыделяющих элементов (ТВЭЛов), заполненных таблетками двуокиси урана.
Тепловыделяющая сборка в натуральную величину
Реактор с загруженными тепловыделяющими сборками
В ходе протекания цепной реакции выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель первого контура — воду, которая подается снизу в активную зону реактора с помощью главных циркуляционных насосов (ГЦН). Нагреваясь до температуры 322 °С вода поступает в парогенератор (теплообменник), где, пройдя по тысячам теплообменных трубок и отдав часть тепла воде второго контура, вновь поступает в активную зону. Так как давление второго контура ниже, вода в парогенераторе вскипает, образуя пар с температурой 274°С, который поступает на турбину. Поступая в цилиндр высокого давления, а затем в три цилиндра низкого давления, пар раскручивает турбину, которая, в свою очередь, вращает генератор, вырабатывая электричество. Отработанный пар поступает в конденсатор, в котором он, как нетрудно догадаться, конденсируется с помощью холодной воды из пруда-охладителя или градирни и вновь возвращается в парогенератор с помощью питательных насосов.
Турбинное отделение и сама турбина
Такая сложная двухконтурная система создана для того, чтобы оградить оборудование (турбина, конденсатор), а также окружающую среду от попадания радиоактивных частиц из первого контура, появление которых возможно из-за коррозии оборудования, наведенной радиоактивности, а также разгерметизации оболочек ТВЭЛов.
Брызгальный бассейн охлаждения резервных дизельных генераторов и систем безопасности
Управление блоками осуществляется из блочного щита управления, который обычно завораживает простого обывателя обилием «огоньков, крутилок и кнопочек».
Расположен он в реакторном отделении, но в «чистой зоне» и на нем постоянно находятся: ведущий инженер по управлению реактором, ведущий инженер по управлению турбинами, ведущий инженер по управлению блоком и начальник смены блока.
Вокруг атомной станции организуется зона наблюдения (та самая тридцатикилометровая зона), в которой ведется постоянный мониторинг радиационной обстановки. Также существует санитарно-защитная зона радиусом 3 км (зависит от проектной мощности АЭС), в которой запрещено проживание людей, а также ограничена сельскохозяйственная деятельность.
Внутренняя территория АЭС разделена на две зоны: зона свободного доступа (чистая зона), где воздействие радиационных факторов на персонал практически исключено, и зону контролируемого доступа (ЗКД), где возможно воздействие радиации на персонал.
Доступ в ЗКД разрешен далеко не всем и возможен только через помещение санпропускника, после процедуры переодевания в спец. одежду и получения индивидуального дозиметра. Доступ в гермооболочку, в которой расположены сам реактор и оборудование первого контура, при работе реактора на мощности вообще запрещен и возможен лишь в исключительных случаях. Получаемые дозы работников АЭС строго фиксируются и нормируются, хотя фактическое облучение при нормальной работе реактора в сотни раз меньше предельных доз.
Дозиметрический контроль на выходе из ЗКД
Выбросы
Наверное, самое большое число слухов и домыслов ходят вокруг выбросов атомных станций. Выбросы действительно есть и происходят они, в основном, через вентиляционные трубы — это те самые трубы, которые стоят возле каждого энергоблока и никогда не дымят. По большей части, в атмосферу попадают инертные радиоактивные газы — ксенон, криптон и аргон.
Но перед сбросом в атмосферу воздух из помещений АЭС проходит систему сложных фильтров, где удаляется большая часть радионуклидов. Короткоживущие изотопы распадаются еще до того, как газы достигнут верха трубы, еще больше снижая радиоактивность. В итоге, вклад в естественный радиационный фон газоаэрозольных выбросов АЭС в атмосферу незначителен и им вообще можно пренебречь. Поэтому атомная энергия является одной из самых чистых, в сравнении с другими электростанциями. В любом случае, все радиоактивные выбросы атомных станций строго контролируются экологами и разрабатываются способы дальнейшего их снижения.
Безопасность
Все системы атомной станции проектируются и работают с учетом многочисленных принципов безопасности. Например, концепция глубоко эшелонированной защиты подразумевает наличие нескольких барьеров на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую среду. Очень похоже на принцип Кащея Бессмертного: топливо сгруппировано в таблетки, которые находятся в циркониевых ТВЭЛах, которые помещены в стальной корпус реактора, который помещен в железобетонную гермооболочку. Таким образом, разрушение одного из барьеров компенсируется следующим. Делается все, чтобы при любой аварии радиоактивные вещества не вышли за пределы зоны контролируемого доступа.
Также, все системы имеют двух- и трехкратное резервирование, в соответствии с принципом единичного отказа, по которому система должна бесперебойно выполнять свои функции даже при отказе любого ее элемента. Вместе с этим применяется принцип разнообразия, то есть использования систем, имеющих разные принципы работы. Например, при срабатывании аварийной защиты в активную зону реактора падают стержни-поглотители и в теплоноситель первого контура дополнительно впрыскивается борная кислота.
Энергоблоки регулярно выводятся в планово-предупредительные ремонты (ППР), в периоды которых происходит перегрузка топлива, а также производится диагностика, ремонт и замена оборудования, модернизация оборудования. Один раз в четыре года работающий энергоблок выводится в капитальный ППР с полной выгрузкой ядерного топлива из активной зоны реактора, обследованием и испытанием внутрикорпусных устройств, а также испытания корпуса реактора на прочность.
На работу некоторых систем безопасности можно посмотреть на интерактивной презентации с сайта Росэнергоатома.
А можно виртуально побродить по Балаковской АЭС.
Как работает атомная электростанция (АЭС)
Несмотря на то, что долгие годы не утихают споры вокруг атомных электростанций, большинство людей мало представляют себе, как АЭС вырабатывает электроэнергию, хотя наверняка знают какую-нибудь легенду про АЭС. В статье будет рассказано в общих чертах как работает атомная электростанция. Каких-то тайн и разоблачений ждать не стоит, но кто-нибудь узнает для себя что-то новенькое.
В статье будет описываются атомные реакторы типа ВВЭР (водо-водяные энергетические реакторы), как самые распространенные.
Видео о том как работает атомная электростанция
В активную зону реактора загружены тепловыделяющие сборки, состоящие из пучка циркониевых тепловыделяющих элементов (ТВЭЛов), заполненных таблетками двуокиси урана.
Тепловыделяющая сборка реактора АЭС в натуральную величину
Деление ядер урана внутри атомного реактора
Реактор атомной электростанции с загруженными тепловыделяющими сборками
Как вырабатывается электроэнергия на АЭС
В ходе протекания цепной реакции выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель первого контура — воду. Вода подается снизу в активную зону реактора с помощью главных циркуляционных насосов (ГЦН). Нагреваясь до температуры 322 °С вода поступает в парогенератор (теплообменник), где, пройдя по тысячам теплообменных трубок и отдав часть тепла воде второго контура, вновь поступает в активную зону.
Так как давление второго контура ниже, вода в парогенераторе вскипает, образуя пар с температурой 274°С, который поступает на турбину. Поступая в цилиндр высокого давления, а затем в три цилиндра низкого давления, пар раскручивает турбину, которая, в свою очередь, вращает генератор, вырабатывая электричество. Отработанный пар поступает в конденсатор, в котором он конденсируется с помощью холодной воды из пруда-охладителя или градирни и вновь возвращается в парогенератор с помощью питательных насосов.
Турбинное отделение АЭС и сама турбина
Такая сложная двухконтурная система создана для того, чтобы оградить оборудование АЭС (турбина, конденсатор), а также окружающую среду от попадания радиоактивных частиц из первого контура, появление которых возможно из-за коррозии оборудования, наведенной радиоактивности, а также разгерметизации оболочек ТВЭЛов.
Откуда и как управляют атомной электростанцией
Управление блоками АЭС осуществляется из блочного щита управления, который обычно сводит простого обывателя обилием «лампочек, крутилочек и кнопочек».
Щит управления расположен в реакторном отделении, но в «чистой зоне» и на нем постоянно находятся:
Территория АЭС
Вокруг атомной станции организуется зона наблюдения (та самая тридцатикилометровая зона), в которой ведется постоянный мониторинг радиационной обстановки. Также существует санитарно-защитная зона радиусом 3 км (зависит от проектной мощности АЭС), в которой запрещено проживание людей, а также ограничена сельскохозяйственная деятельность.
Зоны доступа атомной электростанции
Внутренняя территория АЭС разделена на две зоны: зона свободного доступа (чистая зона), где воздействие радиационных факторов на персонал практически исключено, и зону контролируемого доступа (ЗКД), где возможно воздействие радиации на персонал.
Доступ в ЗКД разрешен далеко не всем и возможен только через помещение санпропускника, после процедуры переодевания в спец. одежду и получения индивидуального дозиметра. Доступ в гермооболочку, в которой расположены сам реактор и оборудование первого контура, при работе реактора на мощности вообще запрещен и возможен лишь в исключительных случаях. Получаемые дозы работников АЭС строго фиксируются и нормируются, хотя фактическое облучение при нормальной работе реактора в сотни раз меньше предельных доз.
Дозиметрический контроль на выходе из ЗКД атомной электростанции
Выбросы в атмосферу через трубу АЭС
Наверное, самое большое число слухов и домыслов ходят вокруг выбросов атомных станций. Выбросы действительно есть и происходят они, в основном, через вентиляционные трубы — это те самые трубы, которые стоят возле каждого энергоблока и никогда не дымят. По большей части, в атмосферу попадают инертные радиоактивные газы — ксенон, криптон и аргон.
Но перед сбросом в атмосферу воздух из помещений АЭС проходит систему сложных фильтров, где удаляется большая часть радионуклидов. Короткоживущие изотопы распадаются еще до того, как газы достигнут верха трубы, еще больше снижая радиоактивность. В итоге, вклад в естественный радиационный фон газоаэрозольных выбросов АЭС в атмосферу незначителен и им вообще можно пренебречь. Поэтому атомная энергия является одной из самых чистых, в сравнении с другими электростанциями. В любом случае, все радиоактивные выбросы атомных станций строго контролируются экологами и разрабатываются способы дальнейшего их снижения.
Безопасность атомной электростанции
Все системы атомной станции проектируются и работают с учетом многочисленных принципов безопасности. Например, концепция глубоко эшелонированной защиты подразумевает наличие нескольких барьеров на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую среду. Очень похоже на принцип Кащея Бессмертного: топливо сгруппировано в таблетки, которые находятся в циркониевых ТВЭЛах, которые помещены в стальной корпус реактора, который помещен в железобетонную гермооболочку. Таким образом, разрушение одного из барьеров компенсируется следующим. Делается все, чтобы при любой аварии радиоактивные вещества не вышли за пределы зоны контролируемого доступа.
Также, все системы имеют двух- и трехкратное резервирование, в соответствии с принципом единичного отказа, по которому система должна бесперебойно выполнять свои функции даже при отказе любого ее элемента. Вместе с этим применяется принцип разнообразия, то есть использования систем, имеющих разные принципы работы. Например, при срабатывании аварийной защиты в активную зону реактора падают стержни-поглотители и в теплоноситель первого контура дополнительно впрыскивается борная кислота.
Как ремонтируют атомные электростанции?
Энергоблоки регулярно выводятся в планово-предупредительные ремонты (ППР), в периоды которых происходит перегрузка топлива, а также производится диагностика, ремонт и замена оборудования, модернизация оборудования. дин раз в четыре года работающий энергоблок выводится в капитальный ППР с полной выгрузкой ядерного топлива из активной зоны реактора, обследованием и испытанием внутрикорпусных устройств, а также испытания корпуса реактора на прочность.
Атомная электростанция — принцип работы простыми словами
Принцип работы атомной электростанции заключается в получении электроэнергии путем контролируемой (т. е. невзрывной) ядерной реакции.
Атомные электростанции используют ядерные реакции деления в реакторах. Реакторы нагревают воду для производства пара, который затем используется для выработки электроэнергии.
Франция около трех четвертей своей мощности получает от атомной энергетики, в то время как Бельгия, Болгария, Чехия, Венгрия, Словакия, Южная Корея, Швеция, Швейцария, Словения и Украина получают одну треть или больше. Япония, Германия и Финляндия получают более четверти своей мощности от атомной энергетики, в то время как в США одну пятую.
Италия приостановила свою ядерную энергетику. Среди стран, не имеющих атомных электростанций Австрия, Дания, Греция, Ирландия, Латвия, Норвегия, Филиппины, Португалия, Уругвай.
Основные части атомной электростанции
Принцип работы атомной электростанции основан и состоит из управляемого атомного реактора из стержней, которые изготовлены из стали, содержащей высокий процент материала, способного поглощать нейтроны, например бор. Стержни управления находятся в активной зоне реактора. Они контролируют количество реакции и, следовательно, количество вырабатываемой тепловой энергии. Кроме того для регулирования скорости синтеза применяются замедлители. Типичными замедлителями являются вода, графит или тяжелая вода (D2O). Только нейтроны с достаточно низкой скоростью могут производить деление ядер урана.
Ядерная реакция производит тепло, которое уносится теплоносителем. Типичными хладагентами являются вода, углекислый газ, жидкий натрий. Пар, вырабатываемый в парогенераторе пар переходит в паровую турбину. Сила паровой струи заставляет турбину вращаться. Турбина связана с генератором, который производит электричество.
Ядерное топливо
Ядерное топливо-это любой материал, который может быть использован для получения ядерной энергии. Наиболее распространенным типом ядерного топлива являются делящиеся элементы, которые могут подвергаться цепным реакциям ядерного деления в реакторе. Наиболее распространенными ядерными топливами являются 235U и 239Pu. Природный уран содержит 0,7% 235U. Но его количество должно быть увеличено на заводах-обогатителях примерно до 3%, чтобы быть более полезным в ядерной области.
Когда нейтрон ударяется об атом урана, уран расщепляется на два более легких атома и одновременно выделяет тепло. Деление тяжелых элементов-это экзотермическая реакция, которая может высвобождать большое количество энергии как в виде электромагнитного излучения, так и в виде кинетической энергии осколков. Цепная реакция относится к процессу, в котором нейтроны, высвобожденные при делении, производят дополнительное деление по крайней мере еще в одном ядре. Это ядро, в свою очередь, производит нейтроны, и процесс повторяется. Контролируемый процесс используется в ядерной энергетике, неконтролируемый в ядерном оружии.
Принцип работы атомной электростанции строится в расщеплении атома ядерного топлива. Когда атом урана расщепляется, часть энергии, которая удерживала его вместе, высвобождается в виде излучения тепла. Поскольку энергия и масса зависимы, высвобожденная энергия — это также высвобожденная масса.
235U + 1 нейтрон = 2 нейтрона + 92Kr (криптон) + 142Ba (барий) + ЭНЕРГИЯ
Таким образом, общая масса действительно немного уменьшается во время реакции.
Типы атомных электростанций
Существуют следующие основные типы реакторов
Реактор с кипящей водой
Реактор с кипящей водой работает как электростанция, вырабатывающая ископаемое топливо. Вода кипит внутри сосуда высокого давления, и образуется пароводяная смесь. Теплоноситель реактора движется вверх по активной зоне, поглощая тепло.
Когда пар поднимается к верхней части сосуда высокого давления, то направляется в турбогенератор для поворота турбины. Существует только один контур с водой при низком давлении, так что вода кипит в ядре при достаточно низком давлении.
Водяной реактор под давлением
Реактор с водой под давлением отличается тем, что здесь пар для работы турбины вырабатывается в парогенераторе. Блок наддува удерживает воду, протекающую через корпус реактора, под очень высоким давлением, чтобы предотвратить ее кипение. Затем горячая вода поступает в парогенератор, где преобразуется в пар. Пар проходит через турбину, которая производит электричество. Около 60% коммерческих энергетических реакторов в мире являются реакторами с водой под давлением. Очевидным преимуществом этого типа является то, что утечка топлива в активной зоне не приведет к попаданию радиоактивных загрязнений в турбину и конденсатор.
Контрольно-измерительных приборы атомной электростанции
Архитектура системы контрольно-измерительных приборов вместе с эксплуатационным персоналом станции служит «центральной нервной системой» атомной электростанции.
Через их различные составные элементы (например, оборудование, модули, датчики, передатчики, резервирование, исполнительные механизмы и т. д.), система ввода-вывода установки определяет основные физические параметры, контролирует производительность, интегрирует информацию и при необходимости автоматически корректирует работу установки. Система реагирует на сбои и ненормальные события, обеспечивает цели эффективного производства электроэнергии и безопасности, а также обеспечивает безопасную и надежную выработку электроэнергии. Большое значение следует придавать проектам, связанным с проектированием, испытанием, эксплуатацией, техническим обслуживанием, лицензированием, эксплуатацией и модернизацией систем ввода-вывода.
Система мониторинга реактора
Система контроля реактора является особенностью атомных электростанций и представляет собой систему нейтронного контроля для измерения нейтронов внутри реактора и систему радиационного контроля для измерения излучения внутри установки.
Система нейтронного мониторинга необходима для мониторинга активной зоны.
Безопасность атомных электростанций
Безопасность серьезно воспринимается теми, кто работает в ядерной сфере. Основной проблемой безопасности является выброс неконтролируемого излучения в окружающую среду, которое может нанести вред человеку и природе как на площадке реактора, так и за ее пределами.
Существует ряд физических барьеров между радиоактивным ядром и окружающей средой. Реакторы заключены в массивный железобетон толщиной 1,8 метра. Рабочие защищены от радиации внутренними бетонными стенами. Вакуумный корпус соединен с корпусами реакторов каналом сброса давления.
Вакуумное здание представляет собой бетонную конструкцию высотой порядка 70 м и находится под отрицательным атмосферным давлением. Это означает, что если бы какая-либо радиация просочилась из реактора, она была бы засосана в вакуумное здание и, следовательно, предотвращена от выброса в окружающую среду. Конструкция реактора также включает в себя несколько резервных компонентов, независимые системы, контроль контрольно-измерительных приборов и предотвращение выхода из строя одного типа оборудования, влияющего на любой другой. Безопасность важна и для работников атомных электростанций.
Дозы облучения контролируются с помощью пультов в активной зоне реактора.
Соблюдается жесткое физическое экранирование и ограничение по времени пребывания рабочего в зонах со значительным уровнем радиации.
Техническое обслуживание охлаждения активной зоны
В любом ядерном реакторе необходимо охлаждение. Обычно ядерные реакторы используют воду в качестве теплоносителя. Некоторые реакторы, которые не могут использовать воду, используют натрий или натриевые соли.
Контроль радиоактивности
Контроль нейтронного потока очень важен. Если мы уменьшаем поток нейтронов, мы уменьшаем радиоактивность. Наиболее распространенным способом уменьшения потока нейтронов является включение поглощения нейтронов через стержни управления.
Управляющие стержни важны, потому что реакция может выйти из-под контроля, если события деления происходят чрезвычайно часто. В современных атомных электростанциях ввод всех стержней управления в активную зону реактора происходит за несколько секунд, что позволяет максимально быстро остановить ядерную реакцию. Кроме того, большинство реакторов сконструировано так, что за пределами оптимального уровня по мере повышения температуры эффективность реакций снижается, следовательно, меньшее количество нейтронов способно вызвать деление и реактор автоматически замедляется.
Выводы
В 1950-х годах внимание было обращено на мирные цели ядерного деления, в частности на производство энергии. Сегодня мир производит столько же электроэнергии из ядерной энергии, сколько и из всех источников, вместе взятых в 1960 году.
Многие страны учитывают принцип работы атомной электростанции и построили исследовательские реакторы, чтобы обеспечить источник нейтронных пучков для научных исследований и производства медицинских и промышленных изотопов.
Сегодня известно, что только восемь стран обладают ядерным потенциалом. В отличие от этого, 56 эксплуатируют гражданские исследовательские реакторы, а 30 размещают около 450 коммерческих ядерных энергетических реакторов общей установленной мощностью более 377 000 МВт. Это более чем в три раза превышает суммарные генерирующие мощности Франции или Германии из всех источников. Порядка 60 ядерных энергетических реакторов находятся в стадии строительства, что эквивалентно 17% существующей мощности, в то время как более 150 твердо запланированы, что эквивалентно 46% нынешней мощности.